Math 554, Exam 2, Summer 2005

Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc; although, by using enough paper, you can do the problems in any order that suits you.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail.

There are 9 problems. Problems 1 through 4 are worth 5 points each. Problems 5 through 9 are worth 6 points each. The exam is worth a total of 50 points.

If you would like, I will leave your graded exam outside my office door. You may pick it up any time before the next class. If you are interested, be sure to tell me.

I will post the solutions on my website shortly after the class is finished.

1. Define upper bound. Use complete sentences. Include everything that is necessary, but nothing more.
2. Define supremum. Use complete sentences. Include everything that is necessary, but nothing more.
3. Define the sequence converges. Use complete sentences. Include everything that is necessary, but nothing more.
4. State the Nested Interval Property. Use complete sentences. Include everything that is necessary, but nothing more.
5. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be sequences of real numbers. Suppose that $\left\{a_{n}\right\}$ converges to the real number a and $\left\{b_{n}\right\}$ converges to the real number b. Prove that the sequence $\left\{a_{n} b_{n}\right\}$ converges to $a b$. ("We did this in class" is not a satisfactory answer. I expect a complete, coherent proof.)
6. Give an example of a set X and a function $f: X \rightarrow X$ with f one-to-one, but f not onto.
7. Find $\bigcap_{n=1}^{\infty}[-n, n]$.
8. Suppose that A and B are non-empty sets of real numbers. Suppose further that 1 is a lower bound for both A and B. Let

$$
C=\{a b \mid a \in A \text { and } b \in B\} .
$$

Prove $\inf C=(\inf A)(\inf B)$.
9. Let S be a set of real numbers. Let p be a limit point of S. Prove that there exists a sequence a_{n} IN S which converges to p.

