Math 554, Exam 1, Summer 2005

Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc; although, by using enough paper, you can do the problems in any order that suits you.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail.

There are 7 problems. Problems 1 through 5 are worth 5 points each. Problem 6 is worth 10 points. Problem 7 is worth 15 points. The exam is worth a total of 50 points.

If you would like, I will leave your graded exam outside my office door. You may pick it up any time before the next class. If you are interested, be sure to tell me.

I will post the solutions on my website shortly after the class is finished.

1. Define upper bound. Use complete sentences. Include everything that is necessary, but nothing more.
2. Define supremum. Use complete sentences. Include everything that is necessary, but nothing more.
3. State the least upper bound axiom of the real numbers. Use complete sentences. Include everything that is necessary, but nothing more.
4. State the Archimedian property of the real numbers. Use complete sentences. Include everything that is necessary, but nothing more.
5. Let S be the following set of order pairs:

$$
S=\{(a, b) \mid a, b \in \mathbb{N}\}
$$

Is S a countable set? If yes, exhibit a one-to-one and onto function $f: \mathbb{N} \rightarrow S$. If no, why not?
6. Suppose $f: X \rightarrow Y$ and $g: Y \rightarrow X$ are functions and that $g \circ f$ is the identity function on X. (In other words, $g(f(x))=x$ for all $x \in X$.)
(a) Does the function f have to be one-to-one? If yes, prove it. If no, give a counter example.
(b) Does the function f have to be onto? If yes, prove it. If no, give a counter example.
7. Suppose that A and B are non-empty sets of real numbers with $12 \leq a \leq 20$ for all $a \in A$ and $2 \leq b \leq 4$ for all $b \in B$. Let

$$
C=\left\{\left.\frac{a}{b} \right\rvert\, a \in A \text { and } b \in B\right\} .
$$

(a) What is an upper bound for C ? Prove your answer.
(b) Give a formula for $\sup C$ in terms of $\sup A, \sup B, \inf A$, and $\inf B$.
(c) Prove your answer to (b).

