Math 554, Final Exam Summer 2004

Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Take enough space for each problem. Turn in your solutions in the order: problem 1, problem 2, ... ; although, by using enough paper, you can do the problems in any order that suits you.

There are 16 problems. Problems 1, 2, 3, and 4 are worth 7 points each. Problems 5 through 16 are worth 6 points each. The exam is worth a total of 100 points.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail. Otherwise, get your course grade from VIP.

I will post the solutions on my website shortly after the class is finished.

1. Define Cauchy sequence. Use complete sentences.
2. Let $f: E \rightarrow \mathbb{R}$ be a function which is defined on a subset E of \mathbb{R}. Define $\lim _{x \rightarrow p} f(x)=L$. Use complete sentences. (Be sure to tell me what kind of a thing p is, and what kind of a thing L is.)
3. Define continuous. Use complete sentences.
4. STATE either version of the Bolzano-Weierstrass Theorem.
5. PROVE either version of the Bolzano-Weierstrass Theorem.
6. PROVE that every Cauchy sequence converges.
7. Let E be a set which is not closed. PROVE that E is not compact by constructing an open cover of E which does not admit a finite subcover.
8. PROVE that the continuous image of a compact set is compact.
9. Let I be an interval and $f: I \rightarrow \mathbb{R}$ be a function which is differentiable at the point p of I. PROVE that f is continuous at p.
10. Let A and B be non-empty sets, and let $f: A \rightarrow B$ and $g: B \rightarrow A$ be functions. Suppose that $g \circ f$ is the identity function on A. (In other words, $g(f(a))=a$ for all a in A.) Does f have to be onto? If yes, PROVE the result. If no, then give an EXAMPLE.
11. Give an example of a countable set E and an open cover \mathcal{U} of E which does not admit a finite subcover of E.
12. Let $f(x)=\left\{\begin{array}{ll}x^{3} & \text { if } x \text { is irrational } \\ 0 & \text { if } x \text { is rational. }\end{array}\right.$ Does $f^{\prime}(0)$ exist? PROVE your answer completely, using ε 's and δ 's.
13. Let $f(x)=\left\{\begin{array}{ll}5 x-3 & \text { if } x \leq 1 \\ 4-2 x & \text { if } 1<x .\end{array}\right.$ Is f continuous at $x=1$? PROVE your answer completely, using ε 's and δ 's.
14. For each integer n, let I_{n} be the open interval $\left(\frac{1}{n}, 2+\frac{1}{n}\right)$. Compute $\bigcap_{n=1}^{\infty} I_{n}$.
15. Let $a_{1} \neq a_{2}$ be real numbers. For $n \geq 3$, let $a_{n}=\frac{2}{3} a_{n-1}+\frac{1}{3} a_{n-2}$. PROVE that the sequence $\left\{a_{n}\right\}$ is a contractive sequence.
16. Let $a_{1}=\sqrt{2}$ and for each integer $n \geq 1$, let $a_{n+1}=\sqrt{2+a_{n}}$. PROVE that $a_{n} \leq 2$ for all n. PROVE that the sequence $\left\{a_{n}\right\}$ is a monotone increasing sequence.
