
Math 554, Final Exam Summer 2004
Write your answers as legibly as you can on the blank sheets of paper provided.
Use only one side of each sheet. Take enough space for each problem. Turn in
your solutions in the order: problem 1, problem 2, . . . ; although, by using enough
paper, you can do the problems in any order that suits you.

There are 16 problems. Problems 1, 2, 3, and 4 are worth 7 points each. Problems
5 through 16 are worth 6 points each. The exam is worth a total of 100 points.

If I know your e-mail address, I will e-mail your grade to you. If I don’t already
know your e-mail address and you want me to know it, then send me an e-mail.
Otherwise, get your course grade from VIP.

I will post the solutions on my website shortly after the class is finished.

1. Define Cauchy sequence. Use complete sentences.

The sequence {an} is a a Cauchy sequence if for all ε > 0 , there exists n0 such
that whenever n,m > n0 , then |an − am| < ε .

2. Let f : E → R be a function which is defined on a subset E of R .
Define lim

x→p
f(x) = L . Use complete sentences. (Be sure to tell me

what kind of a thing p is, and what kind of a thing L is.)

Let f : E → R be a function which is defined on a subset E of R . Assume that
p is a limit point of E and L is a real number. We say that lim

x→p
f(x) = L if for

all ε > 0 , there exists δ > 0 such that whenever |x− p| < δ , x 6= p , and x ∈ E ,
then |f(x) − L| ≤ ε .

3. Define continuous. Use complete sentences.

Let E be a subset of R . The function f : E → R is continuous at the point p
of E , if, for all ε > 0 , there exists δ > 0 , such that whenever |x − p| < δ and
x ∈ E , then |f(x) − f(p)| < ε .

4. STATE either version of the Bolzano-Weierstrass Theorem.

(version 1.) Every bounded infinite set of real numbers has a limit point in R .

(version 2.) Every bounded sequence of real numbers has a convergent subsequence.

5. PROVE either version of the Bolzano-Weierstrass Theorem.

Proof of version 1.

Let S be a bounded infinite subset of R , and let I be a finite closed interval which
contains S . Cut I in half. At least one of the resulting two closed subintervals
of I contains infinitely many elements of S . Call this interval I1 . Continue in
this manner to build the closed interval In , for each natural number n , with the
length of In equal to 1/2n times the length of I and In contains infinitely many
elements of S . The nested interval property of R tells us that the intersection
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∞⋂
n=1

In is non-empty. Let p be an element of
∞⋂

n=1
In . We will show that p is a

limit point of S . Given ε > 0 , there exists n large enough that the length of In

is less than ε . We know that p ∈ In . It follows that In ⊆ Nε(p) . Furthermore,
there is at least one element q of S with q 6= p and q ∈ Nε(p) ; since In ∩ S is
infinite.

Proof of version 2.

Let {an} be a bounded sequence of real numbers. There are two cases to consider
depending upon the cardinality of the set {an | n ∈ N} .
Case 1: {an | n ∈ N} is finite. In this case, it is clear that some subsequence of
{an} is constant.
Case 2: {an | n ∈ N} is infinite. We apply version 1 of the Bolzano-Weierstrass
Theorem. The set {an | n ∈ N} has a limit point p . Pick n1 with |an1 − p| < 1 .
Pick n2 > n1 with |an1−p| < 1

2 . Every open neighborhood of p contains infinitely
many elements of {an | n ∈ N} . We continue in this manner to pick nk > nk−1

with |ank
− p| < 1

k . We see that the subsequence {ank
} of the sequence {an}

converges to p .

6. PROVE that every Cauchy sequence converges.

Let {an} be a Cauchy sequence. It is easy to see that {an} is bounded.
Indeed, there exists n0 with |an − an0 | < 1 for all n > n0 . In this case,
|an| ≤ M = max{|an0 | + 1, |a1|, . . . , |an0−1|} for all n . Version 2 of the Bolzano-
Weierstrass Theorem guarantees the existence of a convergent subsequence {ank

}
of {an} . Let a be the limit of the subsequence {ank

} . We will prove that
the entire sequence {an} converges to a . Let ε > 0 be fixed, but arbitrary.
The subsequence {ank

} converges to a ; so, there exists k0 such that, whenever
k ≥ k0 , then |ank

− a| < ε
2 . The sequence {an} is a Cauchy sequence; so,

there exists n1 such that, whenever n,m ≥ n1 , then |an − am| ≤ ε
2 . Pick

n0 ≥ max{n1, nk0} . If n > n0 , then we may choose k with k > k0 and nk > n0 .
We now have:

|an − a| ≤ |an − ank
| + |ank

− a| ≤ ε

2
+

ε

2
= ε.

7. Let E be a set which is not closed. PROVE that E is not compact
by constructing an open cover of E which does not admit a finite
subcover.

The set E is not closed; so, some limit point p of E is not contained in E . We
construct a sequence {pn} in E which converges to p and which has no other
limit points. Pick p1 ∈ E with |p1 − p| < 1 . Once pn has been found, pick pn+1

in E with |pn+1−p| < 1
2 |pn−p| . The fact that p is a limit point of E guarantees

the existence of pn+1 . Let S be the set {pn | n ∈ N} . We have constructed pn

in a manner which guarantees that S is infinite and the only limit point of S is
p . For each x ∈ E , x is not a limit point of S , so we may pick εx so that
Nεx

(x) contains at most one element of S . Let U = {Nεx
(x) | x ∈ E} . It is clear

that U is an open cover of E . It is also clear that no finite subset of U can cover
E ; since a finite subset of U can cover only a finite subset of the infinite set S .
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8. PROVE that the continuous image of a compact set is compact.

Let K be a compact subset of R and let f : K → R be a continuous function. Let
U = {Uα | α ∈ A} be an open cover of f(K) . For each point p ∈ K , the element
f(p) is in f(K) . The set U covers f(K) , so there is an index αp such that f(p)
is in Uαp

. The function f is continuous at p ; so there exists a δp > 0 such that
f(Nδp

(p) ∩ K) ⊆ Uαp
. We create such a neighborhood Nδp

(p) for each p ∈ K .
We see that N = {Nδp

(p) | p ∈ K} is an open cover of K . The set K is compact;
consequently, there exist p1, . . . , pn in K such that Nδp1

(p1), . . . , Nδpn
(pn) cover

K . It follows that f(Nδp1
(p1) ∩ K), . . . , f(Nδpn

(pn) ∩ K) cover f(K) . But
f(Nδpi

(pi) ∩ K) ⊆ Uαpi
, for all i ; therefore, Uαp1

, . . . , Uαpn
covers f(K) .

9. Let I be an interval and f : I → R be a function which is differentiable
at the point p of I . PROVE that f is continuous at p .

The point p is a limit point of I ; so it suffices to show that lim
x→p

f(x) = f(p) .

The hypothesis tells us that lim
x→p

f(x)−f(p)
x−p exists and is equal to f ′(p) . It is clear

that lim
x→p

x − p exists and is equal to 0 . We proved that the limit of a product

is the product of the limits provided the individual limits exist and are finite. We
conclude that

lim
x→p

f(x) − f(p) = lim
x→p

f(x) − f(p)
x − p

· lim
x→p

x − p = f ′(p) · 0 = 0.

It follows that lim
x→p

f(x) = f(p) , and f is continuous at p .

10. Let A and B be non-empty sets, and let f : A → B and g : B → A be
functions. Suppose that g ◦ f is the identity function on A . (In other
words, g(f(a)) = a for all a in A .) Does f have to be onto? If yes,
PROVE the result. If no, then give an EXAMPLE.

NO . Let A = {1} , B = {1, 2} , f : A → B be the function which sends 1 to
1 , and g : B → A be the function which sends g(1) = g(2) = 1 . We see that
g(f(1)) = 1 , but f is not onto.

11. Give an example of a countable set E and an open cover U of E
which does not admit a finite subcover of E .

Let E be the set { 1
n} and let U = {Un | n ∈ N} , where Un = N 1

n− 1
n+1

( 1
n ) . It is

clear that U is an open cover of E . A little arithmetic shows that 1
n is the only

element of E which is in Un ; consequently, it is not possible to cover E with any
finite subset of U .

12. Let f(x) =
{

x3 if x is irrational

0 if x is rational.
Does f ′(0) exist? PROVE your

answer completely, using ε ’s and δ ’s.
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We show that f ′(0) = 0 . Let ε > 0 be fixed but arbitrary. Take δ =
√

ε . We
will prove that if |x − 0| < δ and x 6= 0 , then | f(x)−f(0)

x−0 | < ε . That is, we prove

(*) |x| < δ, x 6= 0 =⇒ | f(x)
x | < ε.

There are two cases. If x is rational (and x 6= 0 ), then f(x) = 0 and f(x)
x = 0

x = 0
and (*) holds. On the other hand, if x is irrational, then f(x) = x3 and
f(x)

x = x3

x = x2 ; consequently, if |x| <
√

ε , then |x2| < ε and (*) continues to
hold.

13. Let f(x) =
{

5x − 3 if x ≤ 1
4 − 2x if 1 < x.

Is f continuous at x = 1 ? PROVE

your answer completely, using ε ’s and δ ’s.

Let ε > 0 be fixed but arbitrary. Let δ = ε
5 . We prove that if |x − 1| < δ , then

|f(x) − f(1)| < ε . There are two cases. If x < 1 , then

|f(x) − f(1)| = |5x − 3 − 2| = 5|x − 1| < 5 ε
5 = ε.

On the other hand, if x ≤ 1 , then

|f(x) − f(1)| = |4 − 2x − 2| = 2|x − 1| < 2 ε
5 < ε.

14. For each integer n , let In be the open interval ( 1
n , 2 + 1

n ) . Compute
∞⋂

n=1
In .

We see that I1 = (1, 3) , I2 = (1
2 , 2 + 1

2 ) , etc. We conclude that the intersection is

(1, 2] .

15. Let a1 6= a2 be real numbers. For n ≥ 3 , let an = 2
3an−1 + 1

3an−2 .
PROVE that the sequence {an} is a contractive sequence.

We see that

|an+2 − an+1|
|an+1 − an| =

|23an+1 + 1
3an − an+1|

|an+1 − an| =
| − 1

3an+1 + 1
3an|

|an+1 − an| =
| − 1

3 ||an+1 − an|
|an+1 − an| = 1

3 .

Thus, |an+2 − an+1| ≤ 1
3 |an+1 − an| for all n and the sequence {an} is a

contractive sequence.

16. Let a1 =
√

2 and for each integer n ≥ 1 , let an+1 =
√

2 + an . PROVE
that an ≤ 2 for all n . PROVE that the sequence {an} is a monotone
increasing sequence.

We prove an ≤ 2 by induction on n . We see that a1 ≤ 2 . By induction, we
assume that an ≤ 2 . It follows that 2 + an ≤ 4 and an+1 =

√
2 + an ≤ √

4 = 2 .

Now we prove that an ≤ an+1 . We just showed that an − 2 ≤ 0 . Multiply both
sides by the positive number an + 1 to see that (an − 2)(an + 1) ≤ 0 . That is,
a2

n −an −2 ≤ 0 , or a2
n ≤ an +2 . Take the square root (keep in mind that an > 0 )

to see that an ≤ √
an + 2 = an+1 .


