Math 554, Final Exam Summer 2004

Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Take enough space for each problem. Turn in your solutions in the order: problem 1, problem 2, ... ; although, by using enough paper, you can do the problems in any order that suits you.

There are 16 problems. Problems 1, 2, 3, and 4 are worth 7 points each. Problems 5 through 16 are worth 6 points each. The exam is worth a total of 100 points.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail. Otherwise, get your course grade from VIP.

I will post the solutions on my website shortly after the class is finished.

1. Define Cauchy sequence. Use complete sentences.

The sequence $\left\{a_{n}\right\}$ is a a Cauchy sequence if for all $\varepsilon>0$, there exists n_{0} such that whenever $n, m>n_{0}$, then $\left|a_{n}-a_{m}\right|<\varepsilon$.
2. Let $f: E \rightarrow \mathbb{R}$ be a function which is defined on a subset E of \mathbb{R}. Define $\lim _{x \rightarrow p} f(x)=L$. Use complete sentences. (Be sure to tell me what kind of a thing p is, and what kind of a thing L is.)

Let $f: E \rightarrow \mathbb{R}$ be a function which is defined on a subset E of \mathbb{R}. Assume that p is a limit point of E and L is a real number. We say that $\lim _{x \rightarrow p} f(x)=L$ if for all $\varepsilon>0$, there exists $\delta>0$ such that whenever $|x-p|<\delta, x \neq p$, and $x \in E$, then $|f(x)-L| \leq \varepsilon$.

3. Define continuous. Use complete sentences.

Let E be a subset of \mathbb{R}. The function $f: E \rightarrow \mathbb{R}$ is continuous at the point p of E, if, for all $\varepsilon>0$, there exists $\delta>0$, such that whenever $|x-p|<\delta$ and $x \in E$, then $|f(x)-f(p)|<\varepsilon$.

4. STATE either version of the Bolzano-Weierstrass Theorem.

(version 1.) Every bounded infinite set of real numbers has a limit point in \mathbb{R}.
(version 2.) Every bounded sequence of real numbers has a convergent subsequence.

5. PROVE either version of the Bolzano-Weierstrass Theorem.

Proof of version 1.

Let S be a bounded infinite subset of \mathbb{R}, and let I be a finite closed interval which contains S. Cut I in half. At least one of the resulting two closed subintervals of I contains infinitely many elements of S. Call this interval I_{1}. Continue in this manner to build the closed interval I_{n}, for each natural number n, with the length of I_{n} equal to $1 / 2^{n}$ times the length of I and I_{n} contains infinitely many elements of S. The nested interval property of \mathbb{R} tells us that the intersection
$\bigcap_{n=1}^{\infty} I_{n}$ is non-empty. Let p be an element of $\bigcap_{n=1}^{\infty} I_{n}$. We will show that p is a limit point of S. Given $\varepsilon>0$, there exists n large enough that the length of I_{n} is less than ε. We know that $p \in I_{n}$. It follows that $I_{n} \subseteq N_{\varepsilon}(p)$. Furthermore, there is at least one element q of S with $q \neq p$ and $q \in N_{\varepsilon}(p)$; since $I_{n} \cap S$ is infinite.

Proof of version 2.

Let $\left\{a_{n}\right\}$ be a bounded sequence of real numbers. There are two cases to consider depending upon the cardinality of the set $\left\{a_{n} \mid n \in \mathbb{N}\right\}$.
Case 1: $\left\{a_{n} \mid n \in \mathbb{N}\right\}$ is finite. In this case, it is clear that some subsequence of $\left\{a_{n}\right\}$ is constant.
Case 2: $\left\{a_{n} \mid n \in \mathbb{N}\right\}$ is infinite. We apply version 1 of the Bolzano-Weierstrass Theorem. The set $\left\{a_{n} \mid n \in \mathbb{N}\right\}$ has a limit point p. Pick n_{1} with $\left|a_{n_{1}}-p\right|<1$. Pick $n_{2}>n_{1}$ with $\left|a_{n_{1}}-p\right|<\frac{1}{2}$. Every open neighborhood of p contains infinitely many elements of $\left\{a_{n} \mid n \in \mathbb{N}\right\}$. We continue in this manner to pick $n_{k}>n_{k-1}$ with $\left|a_{n_{k}}-p\right|<\frac{1}{k}$. We see that the subsequence $\left\{a_{n_{k}}\right\}$ of the sequence $\left\{a_{n}\right\}$ converges to p.

6. PROVE that every Cauchy sequence converges.

Let $\left\{a_{n}\right\}$ be a Cauchy sequence. It is easy to see that $\left\{a_{n}\right\}$ is bounded. Indeed, there exists n_{0} with $\left|a_{n}-a_{n_{0}}\right|<1$ for all $n>n_{0}$. In this case, $\left|a_{n}\right| \leq M=\max \left\{\left|a_{n_{0}}\right|+1,\left|a_{1}\right|, \ldots,\left|a_{n_{0}-1}\right|\right\}$ for all n. Version 2 of the BolzanoWeierstrass Theorem guarantees the existence of a convergent subsequence $\left\{a_{n_{k}}\right\}$ of $\left\{a_{n}\right\}$. Let a be the limit of the subsequence $\left\{a_{n_{k}}\right\}$. We will prove that the entire sequence $\left\{a_{n}\right\}$ converges to a. Let $\varepsilon>0$ be fixed, but arbitrary. The subsequence $\left\{a_{n_{k}}\right\}$ converges to a; so, there exists k_{0} such that, whenever $k \geq k_{0}$, then $\left|a_{n_{k}}-a\right|<\frac{\varepsilon}{2}$. The sequence $\left\{a_{n}\right\}$ is a Cauchy sequence; so, there exists n_{1} such that, whenever $n, m \geq n_{1}$, then $\left|a_{n}-a_{m}\right| \leq \frac{\varepsilon}{2}$. Pick $n_{0} \geq \max \left\{n_{1}, n_{k_{0}}\right\}$. If $n>n_{0}$, then we may choose k with $k>k_{0}$ and $n_{k}>n_{0}$. We now have:

$$
\left|a_{n}-a\right| \leq\left|a_{n}-a_{n_{k}}\right|+\left|a_{n_{k}}-a\right| \leq \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
$$

7. Let E be a set which is not closed. PROVE that E is not compact by constructing an open cover of E which does not admit a finite subcover.

The set E is not closed; so, some limit point p of E is not contained in E. We construct a sequence $\left\{p_{n}\right\}$ in E which converges to p and which has no other limit points. Pick $p_{1} \in E$ with $\left|p_{1}-p\right|<1$. Once p_{n} has been found, pick p_{n+1} in E with $\left|p_{n+1}-p\right|<\frac{1}{2}\left|p_{n}-p\right|$. The fact that p is a limit point of E guarantees the existence of p_{n+1}. Let S be the set $\left\{p_{n} \mid n \in \mathbb{N}\right\}$. We have constructed p_{n} in a manner which guarantees that S is infinite and the only limit point of S is p. For each $x \in E, x$ is not a limit point of S, so we may pick ε_{x} so that $N_{\varepsilon_{x}}(x)$ contains at most one element of S. Let $\mathcal{U}=\left\{N_{\varepsilon_{x}}(x) \mid x \in E\right\}$. It is clear that \mathcal{U} is an open cover of E. It is also clear that no finite subset of \mathcal{U} can cover E; since a finite subset of \mathcal{U} can cover only a finite subset of the infinite set S.

8. PROVE that the continuous image of a compact set is compact.

Let K be a compact subset of \mathbb{R} and let $f: K \rightarrow \mathbb{R}$ be a continuous function. Let $\mathcal{U}=\left\{U_{\alpha} \mid \alpha \in A\right\}$ be an open cover of $f(K)$. For each point $p \in K$, the element $f(p)$ is in $f(K)$. The set \mathcal{U} covers $f(K)$, so there is an index α_{p} such that $f(p)$ is in $U_{\alpha_{p}}$. The function f is continuous at p; so there exists a $\delta_{p}>0$ such that $f\left(N_{\delta_{p}}(p) \cap K\right) \subseteq U_{\alpha_{p}}$. We create such a neighborhood $N_{\delta_{p}}(p)$ for each $p \in K$. We see that $\mathcal{N}=\left\{N_{\delta_{p}}(p) \mid p \in K\right\}$ is an open cover of K. The set K is compact; consequently, there exist p_{1}, \ldots, p_{n} in K such that $N_{\delta_{p_{1}}}\left(p_{1}\right), \ldots, N_{\delta_{p_{n}}}\left(p_{n}\right)$ cover K. It follows that $f\left(N_{\delta_{p_{1}}}\left(p_{1}\right) \cap K\right), \ldots, f\left(N_{\delta_{p_{n}}}\left(p_{n}\right) \cap K\right)$ cover $f(K)$. But $f\left(N_{\delta_{p_{i}}}\left(p_{i}\right) \cap K\right) \subseteq U_{\alpha_{p_{i}}}$, for all i; therefore, $U_{\alpha_{p_{1}}}, \ldots, U_{\alpha_{p_{n}}}$ covers $f(K)$.
9. Let I be an interval and $f: I \rightarrow \mathbb{R}$ be a function which is differentiable at the point p of I. PROVE that f is continuous at p.

The point p is a limit point of I; so it suffices to show that $\lim _{x \rightarrow p} f(x)=f(p)$. The hypothesis tells us that $\lim _{x \rightarrow p} \frac{f(x)-f(p)}{x-p}$ exists and is equal to $f^{\prime}(p)$. It is clear that $\lim _{x \rightarrow p} x-p$ exists and is equal to 0 . We proved that the limit of a product is the product of the limits provided the individual limits exist and are finite. We conclude that

$$
\lim _{x \rightarrow p} f(x)-f(p)=\lim _{x \rightarrow p} \frac{f(x)-f(p)}{x-p} \cdot \lim _{x \rightarrow p} x-p=f^{\prime}(p) \cdot 0=0
$$

It follows that $\lim _{x \rightarrow p} f(x)=f(p)$, and f is continuous at p.
10. Let A and B be non-empty sets, and let $f: A \rightarrow B$ and $g: B \rightarrow A$ be functions. Suppose that $g \circ f$ is the identity function on A. (In other words, $g(f(a))=a$ for all a in A.) Does f have to be onto? If yes, PROVE the result. If no, then give an EXAMPLE.

NO. Let $A=\{1\}, B=\{1,2\}, f: A \rightarrow B$ be the function which sends 1 to 1 , and $g: B \rightarrow A$ be the function which sends $g(1)=g(2)=1$. We see that $g(f(1))=1$, but f is not onto.
11. Give an example of a countable set E and an open cover \mathcal{U} of E which does not admit a finite subcover of E.

Let E be the set $\left\{\frac{1}{n}\right\}$ and let $\mathcal{U}=\left\{U_{n} \mid n \in \mathbb{N}\right\}$, where $U_{n}=N_{\frac{1}{n}-\frac{1}{n+1}}\left(\frac{1}{n}\right)$. It is clear that \mathcal{U} is an open cover of E. A little arithmetic shows that $\frac{1}{n}$ is the only element of E which is in U_{n}; consequently, it is not possible to cover E with any finite subset of \mathcal{U}.
12. Let $f(x)=\left\{\begin{array}{ll}x^{3} & \text { if } x \text { is irrational } \\ 0 & \text { if } x \text { is rational. }\end{array}\right.$ Does $f^{\prime}(0)$ exist? PROVE your answer completely, using ε 's and δ 's.

We show that $f^{\prime}(0)=0$. Let $\varepsilon>0$ be fixed but arbitrary. Take $\delta=\sqrt{\varepsilon}$. We will prove that if $|x-0|<\delta$ and $x \neq 0$, then $\left|\frac{f(x)-f(0)}{x-0}\right|<\varepsilon$. That is, we prove

$$
\begin{equation*}
|x|<\delta, x \neq 0 \Longrightarrow\left|\frac{f(x)}{x}\right|<\varepsilon \tag{*}
\end{equation*}
$$

There are two cases. If x is rational (and $x \neq 0$), then $f(x)=0$ and $\frac{f(x)}{x}=\frac{0}{x}=0$ and $\left(^{*}\right)$ holds. On the other hand, if x is irrational, then $f(x)=x^{3}$ and $\frac{f(x)}{x}=\frac{x^{3}}{x}=x^{2}$; consequently, if $|x|<\sqrt{\varepsilon}$, then $\left|x^{2}\right|<\varepsilon$ and (*) continues to hold.
13. Let $f(x)=\left\{\begin{array}{ll}5 x-3 & \text { if } x \leq 1 \\ 4-2 x & \text { if } 1<x .\end{array}\right.$ Is f continuous at $x=1$? PROVE your answer completely, using ε 's and δ 's.
Let $\varepsilon>0$ be fixed but arbitrary. Let $\delta=\frac{\varepsilon}{5}$. We prove that if $|x-1|<\delta$, then $|f(x)-f(1)|<\varepsilon$. There are two cases. If $x<1$, then

$$
|f(x)-f(1)|=|5 x-3-2|=5|x-1|<5 \frac{\varepsilon}{5}=\varepsilon
$$

On the other hand, if $x \leq 1$, then

$$
|f(x)-f(1)|=|4-2 x-2|=2|x-1|<2 \frac{\varepsilon}{5}<\varepsilon
$$

14. For each integer n, let I_{n} be the open interval $\left(\frac{1}{n}, 2+\frac{1}{n}\right)$. Compute $\bigcap_{n=1}^{\infty} I_{n}$.
We see that $I_{1}=(1,3), I_{2}=\left(\frac{1}{2}, 2+\frac{1}{2}\right)$, etc. We conclude that the intersection is $(1,2]$.
15. Let $a_{1} \neq a_{2}$ be real numbers. For $n \geq 3$, let $a_{n}=\frac{2}{3} a_{n-1}+\frac{1}{3} a_{n-2}$. PROVE that the sequence $\left\{a_{n}\right\}$ is a contractive sequence.
We see that

$$
\frac{\left|a_{n+2}-a_{n+1}\right|}{\left|a_{n+1}-a_{n}\right|}=\frac{\left|\frac{2}{3} a_{n+1}+\frac{1}{3} a_{n}-a_{n+1}\right|}{\left|a_{n+1}-a_{n}\right|}=\frac{\left|-\frac{1}{3} a_{n+1}+\frac{1}{3} a_{n}\right|}{\left|a_{n+1}-a_{n}\right|}=\frac{\left|-\frac{1}{3}\right|\left|a_{n+1}-a_{n}\right|}{\left|a_{n+1}-a_{n}\right|}=\frac{1}{3} .
$$

Thus, $\left|a_{n+2}-a_{n+1}\right| \leq \frac{1}{3}\left|a_{n+1}-a_{n}\right|$ for all n and the sequence $\left\{a_{n}\right\}$ is a contractive sequence.
16. Let $a_{1}=\sqrt{2}$ and for each integer $n \geq 1$, let $a_{n+1}=\sqrt{2+a_{n}}$. PROVE that $a_{n} \leq 2$ for all n. PROVE that the sequence $\left\{a_{n}\right\}$ is a monotone increasing sequence.

We prove $a_{n} \leq 2$ by induction on n. We see that $a_{1} \leq 2$. By induction, we assume that $a_{n} \leq 2$. It follows that $2+a_{n} \leq 4$ and $a_{n+1}=\sqrt{2+a_{n}} \leq \sqrt{4}=2$.
Now we prove that $a_{n} \leq a_{n+1}$. We just showed that $a_{n}-2 \leq 0$. Multiply both sides by the positive number $a_{n}+1$ to see that $\left(a_{n}-2\right)\left(a_{n}+1\right) \leq 0$. That is, $a_{n}^{2}-a_{n}-2 \leq 0$, or $a_{n}^{2} \leq a_{n}+2$. Take the square root (keep in mind that $a_{n}>0$) to see that $a_{n} \leq \sqrt{a_{n}+2}=a_{n+1}$.

