Math 554, Exam 3, Summer 2004

Write your answers as legibly as you can on the blank sheets of paper provided. Use only **one side** of each sheet. Take enough space for each problem. Turn in your solutions in the order: problem 1, problem 2, \ldots ; although, by using enough paper, you can do the problems in any order that suits you.

There are 9 problems. Problems 1 through 5 are worth 6 points each. Problems 6 through 9 are worth 5 points each. The exam is worth a total of 50 points.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then **send me an e-mail**.

I will leave your exam outside my office door by noon tomorrow, you may pick it up any time between then and the next class.

I will post the solutions on my website shortly after the class is finished.

- 1. Define *Cauchy sequence*. Use complete sentences.
- 2. Define *limit point*. Use complete sentences.
- 3. For each natural number n, let U_n be an open set in \mathbb{R} . Is the intersection $\bigcap_{n=1}^{\infty} U_n$ always an open set? If yes, prove the result. If no, give a counterexample.
- 4. For each natural number n, let U_n be an open set in \mathbb{R} . Is the union $\bigcup_{n=1}^{\infty} U_n$ always an open set? If yes, prove the result. If no, give a counterexample.
- 5. State the theorem which characterizes the closed sets of \mathbb{R} in terms of information about the limit points.
- 6. Prove the first version of the Bolzano-Weierstrass Theorem. That is, prove that every bounded infinite subset of \mathbb{R} has a limit point.
- 7. Let $\{p_n\}$ be a bounded sequence of real numbers and let $p \in \mathbb{R}$ be such that every convergent subsequence of $\{p_n\}$ converges to p. Prove that the sequence $\{p_n\}$ converges to p.
- 8. Let a_1 be a real number in the open interval (0,1). Define the sequence $\{a_n\}$ by $a_{n+1} = \frac{1}{5}(1-a_n^3)$, for all $n \ge 1$. Prove that the sequence $\{a_n\}$ is a contractive sequence.
- 9. Let K be a closed non-empty subset of \mathbb{R} and let x be an element of \mathbb{R} , with $x \notin K$. Prove that there exists at least one element y of K which is closest to x. In other words, if $z \in K$, then $|x y| \leq |x z|$.