Math 554, Exam 3, Summer 2004

Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Take enough space for each problem. Turn in your solutions in the order: problem 1, problem 2, ... ; although, by using enough paper, you can do the problems in any order that suits you.

There are 9 problems. Problems 1 through 5 are worth 6 points each. Problems 6 through 9 are worth 5 points each. The exam is worth a total of 50 points.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail.

I will leave your exam outside my office door by noon tomorrow, you may pick it up any time between then and the next class.

I will post the solutions on my website shortly after the class is finished.

1. Define Cauchy sequence. Use complete sentences.
2. Define limit point. Use complete sentences.
3. For each natural number n, let U_{n} be an open set in \mathbb{R}. Is the intersection $\bigcap_{n=1}^{\infty} U_{n}$ always an open set? If yes, prove the result. If no, give a counterexample.
4. For each natural number n, let U_{n} be an open set in \mathbb{R}. Is the union $\bigcup_{n=1}^{\infty} U_{n}$ always an open set? If yes, prove the result. If no, give a counterexample.
5. State the theorem which characterizes the closed sets of \mathbb{R} in terms of information about the limit points.
6. Prove the first version of the Bolzano-Weierstrass Theorem. That is, prove that every bounded infinite subset of \mathbb{R} has a limit point.
7. Let $\left\{p_{n}\right\}$ be a bounded sequence of real numbers and let $p \in \mathbb{R}$ be such that every convergent subsequence of $\left\{p_{n}\right\}$ converges to p. Prove that the sequence $\left\{p_{n}\right\}$ converges to p.
8. Let a_{1} be a real number in the open interval $(0,1)$. Define the sequence $\left\{a_{n}\right\}$ by $a_{n+1}=\frac{1}{5}\left(1-a_{n}^{3}\right)$, for all $n \geq 1$. Prove that the sequence $\left\{a_{n}\right\}$ is a contractive sequence.
9. Let K be a closed non-empty subset of \mathbb{R} and let x be an element of \mathbb{R}, with $x \notin K$. Prove that there exists at least one element y of K which is closest to x. In other words, if $z \in K$, then $|x-y| \leq|x-z|$.
