Math 554, Exam 2 Solutions, Summer 2004

Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc.

There are 10 problems. Each problem is worth 5 points. The exam is worth a total of 50 points.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail.

I will leave your exam outside my office door by noon tomorrow, you may pick it up any time between then and the next class.

I will post the solutions on my website shortly after the class is finished.

1. Define supremum. Use complete sentences.

The real number α is the supremum of the set of real numbers E, if α is an upper bound of E, and no real number smaller than α is an upper bound of E.

2. Define limit point. Use complete sentences.

The real number p is a limit point of the set of real numbers E if, for all $\varepsilon>0$, there exists $q \in E$ with $q \neq p$ and $|q-p| \leq \varepsilon$.

3. State the least upper bound axiom.

Every non-empty set of real numbers which is bounded from above has a supremum in \mathbb{R}.

4. State either version of the Bolzano-Weierstrass Theorem.

(version 1.) Every bounded infinite set of real numbers has a limit point in \mathbb{R}.
(version 2.) Every bounded sequence of real numbers has a convergent subsequence.
5. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be functions with f one-to-one and g one-to-one, prove that the function $g \circ f: X \rightarrow Z$ is one-to-one.

Take x_{1} and x_{2} in X with $(g \circ f)\left(x_{1}\right)=(g \circ f)\left(x_{2}\right)$. It follows that $g\left(f\left(x_{1}\right)\right)=$ $g\left(f\left(x_{2}\right)\right)$. The function g is one-to-one; so we know that $f\left(x_{1}\right)=f\left(x_{2}\right)$. The function f is one-to-one, so we know that $x_{1}=x_{2}$.

6. Give an example of a bounded set with exactly three limit points.

The set

$$
\left\{\left.1+\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\} \cup\left\{\left.2+\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\} \cup\left\{\left.3+\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}
$$

has exactly 3 limit points; namely, 1,2 , and 3 .
7. For each natural number n, let I_{n} be the open interval $\left(0, \frac{1}{n}\right)$. What is $\bigcap_{n=1}^{\infty} I_{n}$? Prove your answer.
The intersection is empty. If x were an element of the intersection, then $0<x<\frac{1}{n}$, for all positive integers n. There is no such x. (If one looks a a fixed positive number x, the Archimedian Property of \mathbb{R} guarantees that there exists a natural number n with $\frac{1}{n}<x$.)
8. Let $\left\{a_{n}\right\}$ be a sequence which converges to a and $\left\{b_{n}\right\}$ be a sequence which converges to b. Prove that the sequence $\left\{a_{n} b_{n}\right\}$ converges to $a b$.

Let $\varepsilon>0$ be arbitrary, but fixed.

- The sequence $\left\{a_{n}\right\}$ converges to a, so there exists n_{1} such that if $n \geq n_{1}$, then $\left|a_{n}-a\right| \leq 1$. For such n, the Corollary to the triangle inequality tells us that

$$
\left|a_{n}\right|-|a| \leq \| a_{n}|-|a|| \leq\left|a_{n}-a\right| \leq 1
$$

and therefore, $\left|a_{n}\right| \leq|a|+1$.

- The sequence $\left\{b_{n}\right\}$ converges to b, so there exists n_{2} such that if $n \geq n_{2}$, then $\left|b_{n}-b\right| \leq \frac{\varepsilon}{2(|a|+1)}$.
- The sequence $\left\{a_{n}\right\}$ converges to a, so there exists n_{3} such that if $n \geq n_{3}$, then $\left|a_{n}-a\right| \leq \frac{\varepsilon}{2(|b|+1)}$.

Let n_{0} be the maximum of the three integers n_{1}, n_{2}, and n_{3}. Take $n \geq n_{0}$. We know that $n \geq n_{1}$; and therefore,

$$
\begin{equation*}
\left|a_{n}\right| \leq|a|+1 \tag{1}
\end{equation*}
$$

We know that $n \geq n_{2}$; and therefore,

$$
\begin{equation*}
\left|b_{n}-b\right| \leq \frac{\varepsilon}{2(|a|+1)} \tag{2}
\end{equation*}
$$

We know that $n \geq n_{3}$; and therefore,

$$
\begin{equation*}
\left|a_{n}-a\right| \leq \frac{\varepsilon}{2(|b|+1)} \tag{3}
\end{equation*}
$$

The triangle inequality tells us that
$\left|a_{n} b_{n}-a b\right|=\left|\left(a_{n} b_{n}-a_{n} b\right)+\left(a_{n} b-a b\right)\right| \leq\left|a_{n} b_{n}-a_{n} b\right|+\left|a_{n} b-a b\right|=\left|a_{n}\right|\left|b_{n}-b\right|+\left|a_{n}-a\right||b|$.
Use (1), (2) and (3) to see that

$$
\left|a_{n} b_{n}-a b\right| \leq\left|a_{n}\right|\left|b_{n}-b\right|+\left|a_{n}-a\right||b| \leq(|a|+1) \frac{\varepsilon}{2(|a|+1)}+\frac{\varepsilon}{2(|b|+1)}|b|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

9. Let $\left\{b_{n}\right\}$ be a sequence which converges to b, with $b \neq 0$. Prove that the sequence $\left\{\frac{1}{b_{n}}\right\}$ converges to $\frac{1}{b}$.

- The number $\frac{|b|}{2}$ is greater than zero. The sequence $\left\{b_{n}\right\}$ converges to b. Thus, there exists an integer n_{1} such that if $n_{1} \leq n$, then $\left|b_{n}-b\right| \leq \frac{|b|}{2}$. For such n, the Corollary to the triangle inequality tells us that

$$
\left|\left|b_{n}\right|-|b|\right| \leq\left|b_{n}-b\right| \leq \frac{|b|}{2}
$$

In this case,

$$
-\frac{|b|}{2} \leq\left|b_{n}\right|-|b| \leq \frac{|b|}{2}
$$

Add $|b|$ to each term in this inequality to see that

$$
+\frac{|b|}{2} \leq\left|b_{n}\right| \leq \frac{3|b|}{2} .
$$

In particular, the left-most inequality gives an upper bound on $\frac{1}{\left|b_{n}\right|}$; namely,

$$
\begin{equation*}
\frac{1}{\left|b_{n}\right|} \leq \frac{2}{|b|} \tag{4}
\end{equation*}
$$

- The sequence $\left\{b_{n}\right\}$ converges to b. So, there exists an integer n_{2} such that whenever $n \geq n_{2}$, then

$$
\begin{equation*}
\left|b-b_{n}\right| \leq \frac{\varepsilon|b|^{2}}{2} \tag{5}
\end{equation*}
$$

Take n_{0} equal to the maximum of n_{1} and n_{2}. If $n_{0} \leq n$, then use (4) and (5) to see that

$$
\left|\frac{1}{b_{n}}-\frac{1}{b}\right|=\left|\frac{b-b_{n}}{b b_{n}}\right|=\left|b-b_{n}\right| \frac{1}{|b|} \frac{1}{\left|b_{n}\right|} \leq \frac{\varepsilon|b|^{2}}{2} \frac{1}{|b|} \frac{2}{|b|}=\varepsilon .
$$

10. Let $\left\{p_{n}\right\}$ be a bounded sequence of real numbers and let $p \in \mathbb{R}$ be such that every convergent subsequence of $\left\{p_{n}\right\}$ converges to p. Prove that the sequence $\left\{p_{n}\right\}$ converges to p.
Suppose that
the sequence $\left\{p_{n}\right\}$ does NOT converge to p.
In this case, there exists $\varepsilon>0$ such that
for every $n_{0} \in \mathbb{N}$ there exists $n>n_{0}$ such that $\left|p_{n}-p\right| \geq \varepsilon$.
Apply (7) to find $n_{1}>1$, with $\left|p_{n_{1}}-p\right|>\varepsilon$. Apply (7) to find $n_{2}>n_{1}$, with $\left|p_{n_{2}}-p\right|>\varepsilon$. Apply (7) to find $n_{3}>n_{2}$, with $\left|p_{n_{3}}-p\right|>\varepsilon$. Continue in this manner to construct a subsequence

$$
\begin{equation*}
p_{n_{1}}, p_{n_{2}}, p_{n_{3}}, \ldots \tag{8}
\end{equation*}
$$

of the original sequence $\left\{p_{n}\right\}$ which never gets closer to p than ε. The BolzanoWeierstrass Theorem version 2, see problem 4, guarantees that some subsequence of (8) converges. This subsequence of (8) does not converge to p because the subsequence never gets within ε of p. On the other hand, subsequence of (8) is also a subsequence of the original sequence $\left\{p_{n}\right\}$; and therefore, must converge to p by the original hypothesis. This is a contradiction. The original supposition (6) must be false. We conclude that the sequence $\left\{p_{n}\right\}$ does converge to p.

