Math 554, Exam 1, Summer 2004

Write your answers as legibly as you can on the blank sheets of paper provided. Use only **one side** of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc.

There are 7 problems. Problems 1 through 6 are worth 7 points each. Problem 7 is worth 8 points. The exam is worth a total of 50 points.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then **send me an e-mail**.

I will leave your exam outside my office door by noon tomorrow, you may pick it up any time between then and the next class.

I will post the solutions on my website shortly after the class is finished.

- 1. Define upper bound.
- 2. Define *supremum*.
- 3. State the least upper bound axiom.
- 4. Let $f: X \to Y$ and $g: Y \to Z$ be functions with f onto and g onto, prove that the function $g \circ f: X \to Z$ is onto.
- 5. Let x and y be real numbers with 0 < x. Prove that there exists a positive integer N with Nx > y. (I want you to give a complete proof of this result. I want more that its name. I want more than the statement that "we did this in class".)
- 6. Exhibit a one-to-one and onto function f from the open interval (3,4) to the open interval (7,12).
- 7. Let A and B be non-empty sets of real numbers. Suppose that $\inf A = 2$, $\sup A = 6$, $\inf B = 4$ and $\sup B = 30$. Let

$$C = \{ \frac{a}{b} \mid a \in A, \text{ and } b \in B \}.$$

What is $\inf C$? Give a complete proof that your answer is correct.