Math 554, Exam 1, Summer 2004

Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc.
There are 7 problems. Problems 1 through 6 are worth 7 points each. Problem 7 is worth 8 points. The exam is worth a total of 50 points.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail.
I will leave your exam outside my office door by noon tomorrow, you may pick it up any time between then and the next class.
I will post the solutions on my website shortly after the class is finished.

1. Define upper bound.
2. Define supremum.
3. State the least upper bound axiom.
4. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be functions with f onto and g onto, prove that the function $g \circ f: X \rightarrow Z$ is onto.
5. Let x and y be real numbers with $0<x$. Prove that there exists a positive integer N with $N x>y$. (I want you to give a complete proof of this result. I want more that its name. I want more than the statement that "we did this in class".)
6. Exhibit a one-to-one and onto function f from the open inteval $(3,4)$ to the open interval $(7,12)$.
7. Let A and B be non-empty sets of real numbers. Suppose that $\inf A=2$, $\sup A=6, \inf B=4$ and $\sup B=30$. Let

$$
C=\left\{\left.\frac{a}{b} \right\rvert\, a \in A, \text { and } b \in B\right\} .
$$

What is $\inf C$? Give a complete proof that your answer is correct.

