PRINT Your Name:_

Quiz for June 22, 2006

Let f and g be functions from the subset E of \mathbb{R} to \mathbb{R} , and let p be a limit point of E. Suppose that $\lim_{x\to p} f(x)$ exists and equals A. Suppose, also, that $\lim_{x\to p} g(x)$ exists and equals B. Prove $\lim_{x\to p} f(x)g(x)$ exists and equals AB. I expect a complete ε , δ proof.

ANSWER: Let $\varepsilon > 0$ be arbitrary, but fixed. We see that

$$|f(x)g(x) - AB| = |f(x)g(x) - Ag(x) + Ag(x) - AB| \le |f(x) - A||g(x)| + |A||g(x) - B|.$$

• We are told that $\lim_{x \to p} g(x) = B$; hence, there exists $\delta_1 > 0$ such that, whenever $x \in E$, $x \neq p$, and $|x - p| < \delta_1$, then |g(x) - B| < 1. For such x, we have

 $|g(x)| = |g(x) - B + B| \le |g(x) - B| + |B| < |B| + 1.$

In other words,

(1)
$$x \in E, \ x \neq p, \ |x - p| < \delta_1 \implies |g(x)| < |B| + 1$$

• We are told that $\lim_{x \to p} g(x) = B$; hence, there exists $\delta_2 > 0$ such that

(2)
$$x \in E, \ x \neq p, \ |x-p| < \delta_2 \implies |g(x)-B| < \frac{\varepsilon}{2(|A|+1)}$$

• We are told that $\lim_{x \to p} f(x) = A$; hence, there exists $\delta_3 > 0$ such that

(3)
$$x \in E, \ x \neq p, \ |x-p| < \delta_3 \implies |f(x) - A| < \frac{\varepsilon}{2(|B|+1)}$$

Now, we take $\delta = \min\{\delta_1, \delta_2, \delta_3\}$. We also take an arbitrary $x \in E$ with $x \neq p$ and $|x - p| < \delta$. We see from (1) that |g(x)| < |B| + 1; from (2) that $|g(x) - B| < \frac{\varepsilon}{2(|A|+1)}$; and from (3) that $|f(x) - A| < \frac{\varepsilon}{2(|B|+1)}$. Therefore,

$$|f(x)g(x) - AB| \le |f(x) - A||g(x)| + |A||g(x) - B|$$

$$< \frac{\varepsilon}{2(|B|+1)}(|B|+1) + |A|\frac{\varepsilon}{2(|A|+1)} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$