\qquad

Quiz for June 22, 2006

Let f and g be functions from the subset E of \mathbb{R} to \mathbb{R}, and let p be a limit point of E. Suppose that $\lim _{x \rightarrow p} f(x)$ exists and equals A. Suppose, also, that $\lim _{x \rightarrow p} g(x)$ exists and equals B. Prove $\lim _{x \rightarrow p} f(x) g(x)$ exists and equals $A B$. I expect a complete ε, δ proof.

ANSWER: Let $\varepsilon>0$ be arbitrary, but fixed. We see that

$$
|f(x) g(x)-A B|=|f(x) g(x)-A g(x)+A g(x)-A B| \leq|f(x)-A||g(x)|+|A||g(x)-B| .
$$

- We are told that $\lim _{x \rightarrow p} g(x)=B$; hence, there exists $\delta_{1}>0$ such that, whenever $x \in E, x \neq p$, and $|x-p|<\delta_{1}$, then $|g(x)-B|<1$. For such x, we have

$$
|g(x)|=|g(x)-B+B| \leq|g(x)-B|+|B|<|B|+1
$$

In other words,

$$
\begin{equation*}
x \in E, x \neq p,|x-p|<\delta_{1} \Longrightarrow|g(x)|<|B|+1 \tag{1}
\end{equation*}
$$

- We are told that $\lim _{x \rightarrow p} g(x)=B$; hence, there exists $\delta_{2}>0$ such that

$$
\begin{equation*}
x \in E, x \neq p,|x-p|<\delta_{2} \Longrightarrow|g(x)-B|<\frac{\varepsilon}{2(|A|+1)} \tag{2}
\end{equation*}
$$

- We are told that $\lim _{x \rightarrow p} f(x)=A$; hence, there exists $\delta_{3}>0$ such that

$$
\begin{equation*}
x \in E, x \neq p,|x-p|<\delta_{3} \Longrightarrow|f(x)-A|<\frac{\varepsilon}{2(|B|+1)} \tag{3}
\end{equation*}
$$

Now, we take $\delta=\min \left\{\delta_{1}, \delta_{2}, \delta_{3}\right\}$. We also take an arbitrary $x \in E$ with $x \neq p$ and $|x-p|<\delta$. We see from (1) that $|g(x)|<|B|+1$; from (2) that $|g(x)-B|<\frac{\varepsilon}{2(|A|+1)}$; and from (3) that $|f(x)-A|<\frac{\varepsilon}{2(|B|+1)}$. Therefore,

$$
\begin{aligned}
& |f(x) g(x)-A B| \leq|f(x)-A||g(x)|+|A||g(x)-B| \\
& <\frac{\varepsilon}{2(|B|+1)}(|B|+1)+|A| \frac{\varepsilon}{2(|A|+1)}<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
\end{aligned}
$$

