Math 544 Exam 2 Summer 2000

Use the paper provided. Put your name on the front of the first page and the back of the last page. Problems 7 and 8 are worth 7 points each. The other problems are worth 6 points each.

1. Define "limit of a sequence".
2. Define "one-to-one".
3. Define "countable".
4. Prove that the open interval $(0,1)$ and the open interval $(-1,2)$ have the same cardinality.
5. Prove that the open interval $(0,1)$ is uncountable. (I do want to see a proof here. "We proved this in class" is not an acceptable answer.)
6. Let A and B be non-empty sets, and let $f: A \rightarrow B$ and $g: B \rightarrow A$ be functions. Suppose that $g \circ f$ is the identity function on A. (In other words, $g(f(a))=a$ for all a in A.)
(a) Prove that f is one-to-one.
(b) Prove that g is onto.
(c) Give an example to show that f does not have to be onto. (Your example can be very small.)
7. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be sequences. Suppose that $\left\{a_{n}\right\}$ converges to a and $\left\{b_{n}\right\}$ converges to b. Prove that the sequence $\left\{a_{n}+b_{n}\right\}$ converges to $a+b$. (I do want to see a proof here. "We proved this in class" is not an acceptable answer.)
8. Let $\left\{a_{n}\right\}$ be a sequence of real numbers with $-100<a_{n}<100$ for all n.
(a) Suppose the sequence $\left\{a_{n}\right\}$ converges to a. Prove that the sequence $\left\{a_{n}^{2}\right\}$ converges to a^{2}. (I want to see a proof here. Either prove the statement I have written or prove a more general statement and deduce this statement from it. "This is a special case of $x x x$, which was proved in class", is not an acceptable answer.)
(b) Give an example of a sequence $\left\{a_{n}\right\}$ for which $\left\{a_{n}^{2}\right\}$ converges, but $\left\{a_{n}\right\}$ does not converge.
