PRINT Your Name: \qquad
Quiz 3, Spring, 2013
The quiz is worth 5 points. Remove EVERYTHING from your desk except this quiz and a pen or pencil. SHOW your work. Express your work in a neat and coherent manner.

Calculate $\iint_{R}(x+y)^{2} e^{x-y} d x d y$, where R is the region bounded by $x+y=1$, $x+y=4 \quad x-y=-1$ and $x-y=1$.
Answer: Observe that R is the rectangle with vertices $(1,0),\left(\frac{5}{2}, \frac{3}{2}\right),\left(\frac{3}{2}, \frac{5}{2}\right)$, $(0,1)$. We create a transformation T from the the unit square (call this U) to R in two steps. First we send the unit square to the rectangle with vertices $(0,0)$, $\left(\frac{3}{2}, \frac{3}{2}\right),\left(\frac{1}{2}, \frac{5}{2}\right),(-1,1)$. Then we add 1 to each x-coordinate. (I have drawn a picture on a separate page.) So

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=T\left(\left[\begin{array}{l}
u \\
v
\end{array}\right]\right)=\left[\begin{array}{cc}
\frac{3}{2} & -1 \\
\frac{3}{2} & 1
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] .
$$

In other words,

$$
x=\frac{3}{2} u-v+1 \quad \text { and } \quad y=\frac{3}{2} u+v .
$$

Do notice that

$$
(0,0) \mapsto(1,0), \quad(1,0) \mapsto\left(\frac{5}{2}, \frac{3}{2}\right), \quad(1,1) \mapsto\left(\frac{3}{2}, \frac{5}{2}\right) \quad(0,1) \mapsto(0,1)
$$

as desired. The Jacobian is

$$
\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|\left|=\left|\begin{array}{cc}
\frac{3}{2} & -1 \\
\frac{3}{2} & 1
\end{array}\right|\right|=3 .
$$

Let $f(x, y)=(x+y)^{2} e^{x-y}$. The original integral is equal to

$$
\begin{gathered}
\iint_{U} \operatorname{Jac} f(x(u, v), y(u, v)) d u d v=3 \int_{0}^{1} \int_{0}^{1}(3 u+1)^{2} e^{-2 v+1} d u d v \\
=\left.\left.\frac{(3 u+1)^{3}}{3}\right|_{0} ^{1} \frac{e^{-2 v+1}}{-2}\right|_{0} ^{1}=\frac{21\left(e-\frac{1}{e}\right)}{2}
\end{gathered}
$$

