There are 10 problems. Each problem is worth 10 points. SHOW your work. CIRCLE your answer. NO CALCULATORS! Write your name on the front of the first page of your solution AND on the back of the last page of your solution.

1. Find the equation of the plane which contains $(1,1,1),(2,2,3)$, and $(1,3,4)$. Be sure to check your answer.
2. Find the equation of the plane which is tangent to $z=x^{2}+y^{2}$ at $x=1$ and $y=2$.
3. Find the equations of the line tangent to $\overrightarrow{\boldsymbol{c}}(t)=\left(t, t^{2}, t^{3}\right)$ at $(2,4,8)$.
4. Find $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$. (If the limit does not exist, be sure to explain why it does not exist.)
5. Suppose that $\overrightarrow{\boldsymbol{c}}(t)$ is a path with constant speed. Prove that this path has the property that velocity is always perpendicular to acceleration.
6. Find the length of $\overrightarrow{\boldsymbol{c}}(t)=\left(2 t, t^{2}, \ln t\right)$ between $(2,1,0)$ and $(4,4, \ln 2)$.
7. Find the curvature of $\overrightarrow{\boldsymbol{c}}(t)=(\cos t, \sin t, t)$.
8. Let $w=f(x, y, z)$. View the rectangular coordinates (x, y, z) in terms of the spherical coordinates (ρ, ϕ, θ). Express $\frac{\partial w}{\partial \phi}$ in terms of $\frac{\partial w}{\partial x}, \frac{\partial w}{\partial y}, \frac{\partial w}{\partial z}, \rho, \phi$, and θ.
9. Parametrize $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$. (In other words, find a path $\overrightarrow{\boldsymbol{c}}(t)=(x(t), y(t))$ so that the curve traced out by $\overrightarrow{\boldsymbol{c}}(t)$ is $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$.)
10. Consider the function $f(x, y)=y^{2}-x^{2}$.
(a) Graph the level set of value 9 for this function.
(b) Calculate $\left.\vec{\nabla} f\right|_{(0,3)}$. Graph $-\left.\frac{1}{10} \vec{\nabla} f\right|_{(0,3)}$ on your graph of part (a) starting at $(0,3)$.
(c) Calculate $\left.\vec{\nabla} f\right|_{(4,5)}$. Graph $-\left.\frac{1}{10} \vec{\nabla} f\right|_{(4,5)}$ on your graph of part (a) starting at $(4,5)$.
