There are 10 problems. Each problem is worth 10 points. SHOW your work. \boxed{CIRCLE} your answer. **NO CALCULATORS!** Write your name on the front of the first page of your solution **AND** on the back of the last page of your solution.

- 1. Find the equation of the plane which contains (1, 1, 1), (2, 2, 3), and (1, 3, 4). Be sure to check your answer.
- 2. Find the equation of the plane which is tangent to $z = x^2 + y^2$ at x = 1 and y = 2.
- 3. Find the equations of the line tangent to $\overrightarrow{c}(t) = (t, t^2, t^3)$ at (2, 4, 8).
- 4. Find $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$. (If the limit does not exist, be sure to explain why it does not exist.)
- 5. Suppose that $\overrightarrow{c}(t)$ is a path with constant speed. Prove that this path has the property that velocity is always perpendicular to acceleration.
- 6. Find the length of $\overrightarrow{c}(t) = (2t, t^2, \ln t)$ between (2, 1, 0) and $(4, 4, \ln 2)$.
- 7. Find the curvature of $\overrightarrow{c}(t) = (\cos t, \sin t, t)$.
- 8. Let w = f(x, y, z). View the rectangular coordinates (x, y, z) in terms of the spherical coordinates (ρ, ϕ, θ) . Express $\frac{\partial w}{\partial \phi}$ in terms of $\frac{\partial w}{\partial x}$, $\frac{\partial w}{\partial y}$, $\frac{\partial w}{\partial z}$, ρ , ϕ , and θ .
- 9. Parametrize $\frac{x^2}{4} + \frac{y^2}{9} = 1$. (In other words, find a path $\overrightarrow{c}(t) = (x(t), y(t))$ so that the curve traced out by $\overrightarrow{c}(t)$ is $\frac{x^2}{4} + \frac{y^2}{9} = 1$.)
- 10. Consider the function $f(x, y) = y^2 x^2$.
 - (a) Graph the level set of value 9 for this function.
 - (b) Calculate $\overrightarrow{\nabla} f|_{(0,3)}$. Graph $-\frac{1}{10}\overrightarrow{\nabla} f|_{(0,3)}$ on your graph of part (a) starting at (0,3).
 - (c) Calculate $\overrightarrow{\nabla} f|_{(4,5)}$. Graph $-\frac{1}{10}\overrightarrow{\nabla} f|_{(4,5)}$ on your graph of part (a) starting at (4,5).