Integrals Over Poths and Surfaces

The formal statement of this fact is known as the Fary-Milnor theorem. Legend .
has it that John Milnor, a contemporary of John Nash’s' at Princeton University, was

asleep in a math class as the professor wrote three unsolved knot theory problems on the :

blackboard. At the end of the class, Milnor (still an undergraduate) woke up and, thinking

the biackboard problems were assigned as homework, quickly wrote them down. The
following week he turned in the solution to all three problems—one of which was a proof

of the Fary-Milnor theorem! Some years later, he was appointed a professor at Princeton,
and in 1962 he was awarded (albeit for other work) a Fields medal, mathematics’ hlghest__

honor generally regarded as the mathematical Nobel Prize.

exercises

In Exercises ] to 4, find an appropriate pavametrization for the given piecewise-smooth curve in B2, with the implied
pprops P glven p P

orientation,

1. The curve C, which goes along the circle of radius 3, 3. The curve C, which goes along y = sinx from the pomt
from the point (3, 0} to the point (3, §), and then in a (0, 0) to the point (7, 0) and then along the x-axis backL
straight line along the x-axis back to (3, 0) o (0,0

2. The curve C, which goes along y = x2 from the 4. The closed curve C described by the ellipse
point (0, 0} to the point {2, 4}, then in a straight line (x—22  (p=3)?
from (2, 4) to (0, 4), and then along the y-axis back “+ ) =1
to (0, 0) - 4 9

oriented counterclockwise

In Exercises 5 to 8, find an appropriate paramerrization for the given piecewise-smooth curve in B,

5

18.

The intersection of the plane z = 3 with the efliptical {b) fix,»,2z) = cosz, casinpart (a)
cylinder
y 11. Evaluate the following path integrals fc Flx, py2)ds,
9 16 = 1 where
The triangle formed by traveling from the point {1, 2, 3) (@) flx,y.2) =exp/z,and
to (0, ~2,1),to (6, 4, 2), and back to (1, 2, 3) et (1,2, rz),t e{0,1]
() f{x,y,2) = yz,and e: ¢ > (1, 3¢, 28),
The intersection of the surfaces y = x and z = x°, from tefl,3]

the point (=3, —3, 9) to (2, 2. 4)
12, Evaluate the integral of f{x, y, z) along the path ¢,

The intersection of the cylinder 3 + 22 = 1 and the where

planez = x
(@ f(x,7.2) =xcosz, et e fit 2 r e (0,1

0 flx.y,2) = (x + )y +2), and
et (1, 30972 ().relL2]

Let fix,y, 2y =yande(®) = (4,0, £,0<t < 1.
Prove that [ fds =0

Evaluate the following path integrals Jrc flx, vy, z) ds, 13. Let f: B¥\jxz piane} ~ R be defined by
where f(x,p,2) = 1/y* Evaluate [ f(x, y, z) ds, where
(@) fix,y,z2) =x+y+zand e 1, &) = R? is given by e() = (Jog i + £f + 2k

c !> (sinf, cost, £}, ¢ € [0, 2ur]

'John Nash is the subject of Sytvia Nasar’s best-selling biography, 4 Beautiful Mind, a fictionalized version of which was made into amﬂ"’ie-

in 2001,




7.1 The Pathintegral ¢ 287
sgend 14. (a) Show that the path integral of f(x,y) along a path 15, Let f(x, y) = 2x — y, and consider the path
:gwas given in polar coordinates by » = r(#), x=rty=4 1 <<
: B <8 <6,,i S .
wm the b=t =t (a) Compute the integral of f along this path and
nking . interpret the answer geometrically.
) 2 .y 2
t, The Freosd, rsn@)/r2 & (f’l) 46, (b) Ewaluate the arc-length function 5(r) and redo
proof & ae part (a) in terms of s (you may wish to consult
seton, (b) Compute the arc length of the path Excrcise 2, Section 4.2).
ghest re=1+cosd, 0 <6 <27,
Exercises 16 fo 19 ave concerned with the application of the path integral to the problem of defining the average value of a
scalar function along a path. Define the number
' Jo fx,y, 2)ds
i{e)
fo be the average value of f along ¢. Here I(cy is the length of the path:
point () = /”cf(mﬁ d
. | - i I,
» back o
(This is analogous to the average of a function over a region defined in Section 6,3.)
16. (a) Justify the formula [ [, f(x, y, 2) ds}/ /() for the of g on [a, b] is given by:
average value of f along ¢ using Riemeann sums.
. b
{b) Show that the averafc value of f along ¢in / fds = T+ 2(x)? ds,
Example 1 5 (1 + -3-71'2). c P
{c) In Exercise 10{2) and (b) above, find the average . ) .
value of £ over the given curves, 21, If?g: [a, .b] — R is piccewise continuously
differentiable, let the length of the graph of g on fa, b)
17. Find the average v coordinate of the points on the be defined as the length of the path £ - (7, g(£)} for
ds, semicircle parametrized by ¢; [0, 7] — RS, te [a,‘ b]. Show that the length of the graph of g on
9+ (0, asiné, acosd);a > 0. fa, bl is
18. Suppose t‘he semicirgle in Exercise 17 is 1.nade of 2 wire b T+ g E dx
with a uniform density of 2 grams per unit lengti. ; g '
(a) What is the total mass of the wire? _ _
{b) Where is the center of mass of this configuration of 22. Us_e iExemfs‘e 21 m_ﬁ?é the‘l—er;gth of the graph of
; wire? (Consult Section 6.3.) yiogritomy = ltox =2
. : 23. Use Exercise 20 to evaluate the path inte ral of
19. Let ¢ be the path given by ¢(7) = (¢, 3) for r & [0, 1. path nleg
i o€ e the path given by e(t) = { ylor £ € [0,1] J{x, ¥) = y over the graph of the semicircle
(a) Find I(c), the length of the path. y=+1-3% ~1<x <1
(b} Find the average y coordinate along the path ¢.
24. Compute the path integral of f(x, y) = »7 over the
. 20, Show that the path integral of a function f(x, y)overa graphy =", 0 =x < 1.
path ' given by the graph of ¥ = g(x), @ < x < b is
K. given by: 25. Compute the path integral of £(x, ¥, 2} = xyz aver the
\ path c(z) = (cosz, sinz, 1), 0 < ¢ < z,
/C fs = / S, gD 1+ [/ (x)]? dx 26. Find the mass of a wire formed by the intersection of the
’ o Spherex2+y2+22=1andthep]anex—f—y—{-zinf
. Conelude that if g : [a, b1 — R is plecewise the density at {x, y, 2} is given by p(x, 7. 2) = x% grams
movie g g Y
continuously differentiable, then the length of the graph per unit length of wire.




integrals Over Paths and Surfaces

27, Evaluate f o S ds, where f(x,p,2) =z and Galileo contempiated the following question: Does a
e(f) = (a.‘l:os frsing ) for 0 <7 <. bead falling under the influence of gravity from a point
A to a point B along a curve do so in the least possible
28, Write the following Hmit as a path integral of time if that curve is a ciroular arc? For any given path,
Féx, v, z) = xy over some path ¢ on [0, 1] and evaluate: the time of trapsit 7" is a path integral
N - dr
oyl 2¢.2 2 o e
Jmit . iF{th —1f), v

i=1

where the bead’s velocity is v = /22y, where g is the
gravitational constant. In 1697, Johana Bernoulii
challenged the mathematical world to find the path in =~
which the bead would rofl from 4 o B in the least time,
This solution would determine whether Galileo’s I
considerations had been correct.

where 11, ..., fx is a partition of {0, 1].

i 29, Consider paths that connect the points 4 = (0, 1) and
' B = (1,0) in the xy plane, as in Figure 7.1.5.%

(a) Calculate T for the straight-line path p =1 - x,

(b) Write a formula for 7" for Galileo's circular path,
given by (x — 1¥ +(y — 1) = 1.

Incidentally, Newton Was#the first to send his solufion

{which turned out to be a cycloid—the same curve
Circular path {inverted) that we studied in Section 2.4, Example 4},
but he did so anomymously. Bernoulli was not fooled,
however. When he received the solution, he immediately
knew its author, exclaiming, “I know the Lion from his.
paw.” While the solution of this problem is a cycloid, it

i > te X is known in the lterature as the brachistrochrone, This
was the beginning of the important field called the
figure 7.1.5 A curve joining the points Aand 8. calculus of variations.

7.2 Line Integrails

We now consider the probiem of integrating a vecror field along a path. We will begini -
by considering the notion of work to motivate the general definition. :

Work Done by Force Fields .

If F is a force field in space, then a test particle {for example, a small unit charge in2a
eleciric force field or a unit mass in a gravitational field) will experience the force ]
Suppose the particle moves along the image of a path ¢ while being acted upon by F. £
fundamental concept is the work done by F on the particle as it traces out the path ¢.; __f
¢ is a straight-line displacement given by the vector d and if F is a constant force, thien
the work done by F in moving the particle along the path is the dot product F - d:

F - d = (magnitude of force) x (displacement in direction of force).

If the path is curved, we can imagine that it is made up of a succession of inﬁnitcsi_ﬁ_l?}
straight-line displacements or that it is approximated by a finite number of straight-line
displacements. Then (as in our derivation of the formulas for the path integral in'the
preceding section) we are led to the following formula for the work done by the fd}fce

“We thank Tanya Leise for suggesting this exercise.




