Case 2. If $R \le \rho_1$ [that is, if (x_1, y_1, z_1) is inside the hole], then $|\rho - R| = \rho - R$ for ρ in $[\rho_1, \rho_2]$, and so

$$\begin{split} -V(0,0,R) &= (Gm)\frac{2\pi}{R}\int_{\rho_1}^{\rho_2} \rho[\rho + R - (\rho - R)]\,d\rho = (Gm)4\pi\int_{\rho_1}^{\rho_2} \rho\,d\rho \\ &= (Gm)2\pi\left(\rho_2^2 - \rho_1^2\right). \end{split}$$

The result is independent of R, and so the potential V is constant inside the hole. Because the gravitational force is minus the gradient of V, we conclude that there is no gravitational force inside a uniform hollow planet!

We leave it to you to compute V(0, 0, R) for the case $\rho_1 < R < \rho_2$.

A similar argument shows that the gravitational potential outside any spherically symmetric body of mass M (even if the density is variable) is V = GMm/R, where R is the distance to its center (which is its center of mass).

example 8

Find the gravitational potential acting on a unit mass of a spherical star with a mass $M = 3.02 \times 10^{30}$ kg at a distance of 2.25×10^{11} m from its center ($G = 6.67 \times 10^{-11}$ N·m²/kg²).

solution

The negative potential is

$$-V = \frac{GM}{R} = \frac{6.67 \times 10^{-11} \times 3.02 \times 10^{30}}{2.25 \times 10^{11}} = 8.95 \times 10^8 \text{ m}^2/\text{s}^2.$$

exercises

- 1. Find the coordinates of the center of mass of an isosceles triangle of uniform density bounded by the x axis, y = ax, and y = -ax + 2a.
- 2. Assuming uniform density, find the coordinates of the center of mass of the semicircle $y = \sqrt{r^2 x^2}$, with $y \ge 0$.
- 3. Find the average of $f(x, y) = y \sin xy$ over $D = [0, \pi] \times [0, \pi]$.
- **4.** Find the average of $f(x, y) = e^{x+y}$ over the triangle with vertices (0, 0), (0, 1), and (1, 0).
- 5. Find the center of mass of the region between $y = x^2$ and y = x if the density is x + y.
- **6.** Find the center of mass of the region between y = 0 and $y = x^2$, where $0 \le x \le \frac{1}{2}$.
- 7. A sculptured gold plate D is defined by $0 \le x \le 2\pi$ and $0 \le y \le \pi$ (centimeters) and has mass density

- $\delta(x, y) = y^2 \sin^2 4x + 2$ (grams per square centimeter). If gold sells for \$7 per gram, how much is the gold in the plate worth?
- 8. In Exercise 7, what is the average mass density in grams per square centimeter?
- 9. (a) Find the mass of the box $[0, \frac{1}{2}] \times [0, 1] \times [0, 2]$, assuming the density to be uniform.
 - (b) Same as part (a), but with a mass density $\delta(x, y, z) = x^2 + 3y^2 + z + 1.$
- 10. Find the mass of the solid bounded by the cylinder $x^2 + y^2 = 2x$ and the cone $z^2 = x^2 + y^2$ if the density is $\delta = \sqrt{x^2 + y^2}$.
- 11. Find the mass of the solid ball of radius 5 with density given by

$$\delta(x, y, z) = 2x^2 + 2y^2 + 2z^2 + 1$$

assuming the center of the ball is at the origin.

12. A solid disk of radius 9 and height 2 is placed at the origin, so that it can be expressed by $x^2 + y^2 = 81$ and $0 \le z \le 2$. If the disk has a density given by

$$\delta(x, y, z) = 2x^2 + 2y^2 + 2z^2 + 1,$$

find its mass.

- 13. Find the center of mass of the region bounded by x + y + z = 2, x = 0, y = 0, and z = 0, assuming the density to be uniform.
- 14. Find the center of mass of the cylinder $x^2 + y^2 \le 1$, $1 \le z \le 2$ if the density is $\delta = (x^2 + y^2)z^2$.
- 15. Find the average value of $\sin^2 \pi z \cos^2 \pi x$ over the cube $[0, 2] \times [0, 4] \times [0, 6]$.
- **16.** Find the average value of e^{-z} over the ball $x^2 + v^2 + z^2 < 1$.
- 17. A solid with constant density is bounded above by the plane z = a and below by the cone described in spherical coordinates by $\phi = k$, where k is a constant $0 < k < \pi/2$. Set up an integral for its moment of inertia about the z axis.
- 18. Find the moment of inertia around the y axis for the ball $x^2 + y^2 + z^2 \le R^2$ if the mass density is a constant δ .
- 19. Find the gravitational potential on a mass m of a spherical planet with mass $M = 3 \times 10^{26}$ kg, at a distance of 2×10^8 m from its center.
- 20. Find the gravitational force exerted on a 70-kg object at the position in Exercise 19.
- 21. A body W in xyz coordinates is called symmetric with respect to a given plane if for every particle on one side of the plane there is a particle of equal mass located at its mirror image through the plane.
 - (a) Discuss the planes of symmetry for an automobile shell.
 - (b) Let the plane of symmetry be the xy plane, and denote by W^+ and W^- the portions of W above and below the plane, respectively. By our assumption, the mass density $\delta(x, y, z)$ satisfies $\delta(x, y, -z) = \delta(x, y, z)$. Justify the following steps:

- (c) Explain why part (b) proves that if a body is symmetrical with respect to a plane, then its center of mass lies in that plane.
- (d) Derive this law of mechanics: If a body is symmetric with respect to two planes, then its center of mass lies on their line of intersection.
- **22.** A uniform rectangular steel plate of sides a and b rotates about its center of mass with constant angular velocity ω .
 - (a) The kinetic energy equals $\frac{1}{2}$ (mass)(velocity)². Argue that the kinetic energy of any element of mass $\delta dx dy (\delta = \text{constant})$ is given by $\delta(\omega^2/2)(x^2+y^2) dx dy$, provided the origin (0,0) is placed at the center of mass of the plate.
 - (b) Justify the formula for kinetic energy:

K.E. =
$$\iint_{\text{plate}} \delta \frac{\omega^2}{2} (x^2 + y^2) \, dx \, dy.$$

- (c) Evaluate the integral, assuming that the plate is described by the inequalities $-a/2 \le x \le a/2$, $-b/2 \le y \le b/2$.
- 23. As is well known, the density of a typical planet is not constant throughout the planet. Assume that planet C.M.W. has a radius of 5×10^8 cm and a mass density (in grams per cubic centimeter)

$$\rho(x, y, z) = \begin{cases} \frac{3 \times 10^4}{r}, & r \ge 10^4 \text{ cm,} \\ 3, & r \le 10^4 \text{ cm,} \end{cases}$$

where $r = \sqrt{x^2 + y^2 + z^2}$. Find a formula for the gravitational potential outside C.M.W.

24. Let D be a region in the part of the xy plane with x > 0. Assume D has uniform density, area A(D), and center of mass $(\overline{x}, \overline{y})$. Let W be the solid obtained by rotating D about the y axis. Show that the volume of W is given by

$$vol(W) = 2\pi \overline{x} A(D).$$

25. Use the previous exercise to show that if a doughnut is obtained by rotating the circle $(x - a)^2 + y^2 = r^2$ about the y axis, then the volume of the doughnut is $2\pi^2 ar^2$.

$$\begin{split} \overline{z} \cdot \iiint_{W} \delta(x, y, z) \, dx \, dy \, dz &= \iiint_{W} z \delta(x, y, z) \, dx \, dy \, dz \\ &= \iiint_{W^{+}} z \delta(x, y, z) \, dx \, dy \, dz + \iiint_{W^{-}} z \delta(x, y, z) \, dx \, dy \, dz \\ &= \iiint_{W^{+}} z \delta(x, y, z) \, dx \, dy \, dz + \iiint_{W^{+}} -w \delta(u, v, -w) \, du \, dv \, dw \\ &= 0. \end{split}$$