ıto."

its

given

onto

such n the mple

), 1]. = D.

١, 1),

), we I. By four have

rtex is in

 $p^2 = a$ = a
n by

 $\leq b$. $^{\prime}/2$],

the x of

 v_0 , v_0) uely

-one v) is

However, even if T is one-to-one near every point, and also onto, T need not be globally one-to-one. Thus, we must exercise caution (see Exercise 17).

Surprisingly, if D^* and D are elementary regions and $T: D^* \to D$ has the property that the determinant of $\mathbf{D}T(u,v)$ is not zero for any (u,v) in D^* , and if T maps the boundary of D^* in a one-to-one and onto manner to the boundary of D, then T is one-to-one and onto from D^* to D. (This proof is beyond the scope of this text.)

In summary, we have:

One-to-One and Onto Mappings A mapping $T: D^* \to D$ is *one-to-one* when it maps distinct points to distinct points. It is *onto* when the image of D^* under T is all of D.

A *linear* transformation of \mathbb{R}^n to \mathbb{R}^n given by multiplication by a matrix A is one-to-one and onto when and only when det $A \neq 0$.

exercises

1. Determine if the following functions $T: \mathbb{R}^2 \to \mathbb{R}^2$ are one-to-one and/or onto.

(a)
$$T(x, y) = (2x, y)$$

(b)
$$T(x, y) = (x^2, y)$$

(c)
$$T(x, y) = (\sqrt[3]{x}, \sqrt[3]{y})$$

(d)
$$T(x, y) = (\sin x, \cos y)$$

2. Determine if the following functions $T: \mathbb{R}^2 \to \mathbb{R}^2$ are one-to-one and/or onto.

(a)
$$T(x, y, z) = (2x + y + 3z, 3y - 4z, 5x)$$

(b)
$$T(x, y, z) = (y \sin x, z \cos y, xy)$$

(c)
$$T(x, y, z) = (xy, yz, xz)$$

(d)
$$T(x, y, z) = (e^x, e^y, e^z)$$

- 3. Let D be a square with vertices (0,0), (1,1), (2,0), (1,-1) and D^* be a parallelogram with vertices (0,0), (1,2), (2,1), (1,-1). Find a linear map T taking D^* onto D.
- 4. Let *D* be a parallelogram with vertices (0, 0), (-1, 3), (-2, 0), (-1, -3). Let $D^* = [0, 1] \times [0, 1]$. Find a linear map *T* such that $T(D^*) = D$.
- 5. Let $S^* = (0, 1] \times [0, 2\pi)$ and define $T(r, \theta) = (r \cos \theta, r \sin \theta)$. Determine the image set S. Show that T is one-to-one on S^* .

6. Define

$$T(x^*, y^*) = \left(\frac{x^* - y^*}{\sqrt{2}}, \frac{x^* + y^*}{\sqrt{2}}\right).$$

Show that T rotates the unit square, $D^* = [0, 1] \times [0, 1]$.

- 7. Let $D^* = [0, 1] \times [0, 1]$ and define T on D^* by $T(u, v) = (-u^2 + 4u, v)$. Find the image D. Is T one-to-one?
- 8. Let D^* be the parallelogram bounded by the lines y = 3x 4, y = 3x, $y = \frac{1}{2}x$, and $y = \frac{1}{2}(x + 4)$. Let $D = [0, 1] \times [0, 1]$. Find a T such that D is the image of D^* under T.
- **9.** Let $D^* = [0, 1] \times [0, 1]$ and define T on D^* by $T(x^*, y^*) = (x^*y^*, x^*)$. Determine the image set D. Is T one-to-one? If not, can we eliminate some subset of D^* so that on the remainder T is one-to-one?
- 10. Let D^* be the parallelogram with vertices at (-1, 3), (0, 0), (2, -1), and (1, 2), and D be the rectangle $D = [0, 1] \times [0, 1]$. Find a T such that D is the image set of D^* under T.
- 11. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the spherical coordinate mapping defined by $(\rho, \phi, \theta) \mapsto (x, y, z)$, where

$$x = \rho \sin \phi \cos \theta$$
, $y = \rho \sin \phi \sin \theta$, $z = \rho \cos \phi$.

Let D^* be the set of points (ρ, ϕ, θ) such that $\phi \in [0, \pi], \theta \in [0, 2\pi], \rho \in [0, 1]$. Find $D = T(D^*)$. Is

In Exercises 12 and 13, let $T(\mathbf{x}) = A\mathbf{x}$, where A is a 2 × 2 matrix.

- **12.** Show that *T* is one-to-one if and only if the determinant of *A* is not zero.
- 13. Show that det $A \neq 0$ if and only if T is onto.
- 14. Suppose $T: \mathbb{R}^2 \to \mathbb{R}^2$ is linear and is given by $T(\mathbf{x}) = A\mathbf{x}$, where A is a 2×2 matrix. Show that if det $A \neq 0$, then T takes parallelograms onto parallelograms. [HINT: The general parallelogram in \mathbb{R}^2 can be described by the set of points $\mathbf{q} = \mathbf{p} + \lambda \mathbf{v} + \mu \mathbf{w}$ for $\lambda, \mu \in (0, 1)$ where $\mathbf{p}, \mathbf{v}, \mathbf{w}$ are vectors in \mathbb{R}^2 with \mathbf{v} not a scalar multiple of \mathbf{w} .]

T one-to-one? If not, can we eliminate some subset of D^* so that, on the remainder, T will be one-to-one?

- 15. A map $T : \mathbb{R}^2 \to \mathbb{R}^2$ is called **affine** if $T(\mathbf{x}) = A\mathbf{x} + \mathbf{v}$, where A is a 2×2 matrix, and \mathbf{v} is a fixed vector in \mathbb{R}^2 . Show that Exercises 12, 13, and 14 hold for T.
- **16.** Suppose $T: \mathbb{R}^2 \to \mathbb{R}^2$ is as in Exercise 14 and that $T(P^*) = P$ is a parallelogram. Show that P^* is a parallelogram.
- 17. Show that T is not one-to-one.

6.2 The Change of Variables Theorem

Given two regions D and D^* in \mathbb{R}^2 , a differentiable map T on D^* with image D—that is, $T(D^*) = D$ —and any real-valued integrable function $f \colon D \to \mathbb{R}$, we would like to express $\iint_D f(x,y) \, dA$ as an integral over D^* of the composite function $f \circ T$. In this section we shall see how to do this.

Assume that D^* is a region in the uv plane and that D is a region in the xy plane. The map T is given by two coordinate functions:

$$T(u, v) = (x(u, v), y(u, v))$$
 for $(u, v) \in D^*$.

At first, we might conjecture that

$$\iint_D f(x, y) dx dy \stackrel{?}{=} \iint_{D^*} f(x(u, v), y(u, v)) du dv, \tag{1}$$

where $f \circ T(u, v) = f(x(u, v), y(u, v))$ is the composite function defined on D^* . However, if we consider the function $f: D \to \mathbb{R}^2$ where f(x, y) = 1, then equation (1) would imply

$$A(D) = \iint_D dx \, dy \, \stackrel{?}{=} \iint_{D^*} du \, dv = A(D^*). \tag{2}$$

But equation (2) will hold for only a few special cases and not for a general map T. For example, define T by $T(u, v) = (-u^2 + 4u, v)$. Restrict T to the unit square; that is, to the region $D^* = [0, 1] \times [0, 1]$ in the uv plane (see Figure 6.2.1). Then, as in

figure **6.2.1** The map $T:(u,v)\mapsto (-u^2+4u,v)$ takes the square D^* onto the rectangle D.

