$$\iint_D dA = \int_c^d (\psi_2(y) - \psi_1(y)) \, dy.$$

Again, this result for area agrees with the results of single-variable calculus for the area of a region between two curves.

Either the method for y-simple or the method for x-simple regions can be used for integrals over simple regions.

It follows from formulas (1) and (2) that $\iint_D f dA$ is independent of the choice of the rectangle R enclosing D used in the definition of $\iint_D f dA$, because, if we had picked another rectangle enclosing D, we would have arrived at the same formula (1).

exercises

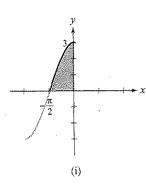
1. In parts (a) through (d) below, each iterated integral is an integral over a region D. Match the integral with the correct region of integration.

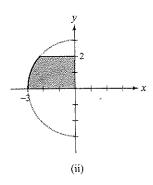
(a)
$$\int_{1}^{2} \int_{\ln x}^{e^{x}} dy dx$$

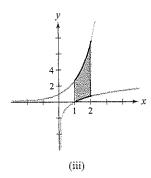
(a)
$$\int_{1}^{2} \int_{\ln x}^{e^{x}} dy dx$$
 (c) $\int_{0}^{2} \int_{-\sqrt{9-v^{2}}}^{0} dx dy$

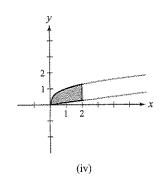
(b)
$$\int_0^2 \int_{(1/8)x}^{x^{1/3}} dy dx$$

(b)
$$\int_0^2 \int_{(1/8)x}^{x^{1/3}} dy dx$$
 (d) $\int_0^3 \int_{\arccos x/3}^0 dx dy$









2. Sketch the region D in \mathbb{R}^2 that represents the region of

(a)
$$\int_{-2}^{2} \int_{0}^{4-y^2} (4-x) \, dx \, dy$$

(b)
$$\int_{0}^{3} \int_{x}^{x} (6+y-2x) \, dy \, dx$$

3. Evaluate the following iterated integrals and draw the regions D determined by the limits. State whether the regions are x-simple, y-simple, or simple.

$$(a) \int_0^1 \int_0^{x^2} dy \, dx$$

(a)
$$\int_0^1 \int_0^{x^2} dy \, dx$$
 (c) $\int_0^1 \int_1^{e^x} (x+y) \, dy \, dx$

(b)
$$\int_{1}^{2} \int_{2x}^{3x+1} dy dx$$

(b)
$$\int_{1}^{2} \int_{2x}^{3x+1} dy dx$$
 (d) $\int_{0}^{1} \int_{x^{3}}^{x^{2}} y dy dx$

4. Evaluate the following integrals and sketch the

(a)
$$\int_{-3}^{2} \int_{0}^{y^2} (x^2 + y) dx dy$$

(b)
$$\int_{-1}^{1} \int_{-2|x|}^{|x|} e^{x+y} dy dx$$

(c)
$$\int_0^1 \int_0^{(1-x^2)^{1/2}} dy dx$$

(d)
$$\int_0^{\pi/2} \int_0^{\cos x} y \sin x \, dy \, dx$$

(e)
$$\int_0^1 \int_{y^2}^y (x^n + y^m) dx dy$$
, $m, n > 0$

(f)
$$\int_{-1}^{0} \int_{0}^{2(1-x^2)^{1/2}} x \, dy \, dx$$

- (5.) Use double integrals to compute the area of a circle of radius r.
- **6.** Using double integrals, determine the area of an ellipse with semiaxes of length a and b.
- 7. What is the volume of a barn that has a rectangular base 20 ft by 40 ft, vertical walls 30 ft high at the front (which we assume is on the 20-ft side of the barn), and 40 ft high at the rear? The barn has a flat roof. Use double integrals to compute the volume.
- 8. Let D be the region bounded by the positive x and y axes and the line 3x + 4y = 10. Compute

$$\iint_D (x^2 + y^2) \, dA.$$

Let D be the region bounded by the y axis and the parabola $x = -4y^2 + 3$. Compute

$$\int \int_D x^3 y \, dx \, dy.$$

- 10. Evaluate $\int_0^1 \int_0^{x^2} (x^2 + xy y^2) dy dx$. Describe this iterated integral as an integral over a certain region D in the xy plane.
- Let *D* be the region given as the set of (x, y), where $1 \le x^2 + y^2 \le 2$ and $y \ge 0$. Is *D* an elementary region? Evaluate $\iint_D f(x, y) dA$, where f(x, y) = 1 + xy.
- 12. Evaluate the following double integral:

$$\iint_D \cos y \, dx \, dy,$$

where the region D is bounded by y = 2x, y = x, $x = \pi$, and $x = 2\pi$.

13. Evaluate the following double integral:

$$\iint_D xy\,dA,$$

- where the region D is the triangular region whose vertices are (0, 0), (0, 2), (2, 0).
- **14.** Use the formula $A(D) = \iint_D dx dy$ to find the area enclosed by one period of the sine function $\sin x$, for $0 \le x \le 2\pi$, and the x axis.
- 15. Find the volume of the region inside the surface $z = x^2 + y^2$ and between z = 0 and z = 10.
- **16.** Set up the integral required to calculate the volume of a cone of base radius *r* and height *h*.
- 17. Evaluate $\iint_D y \, dA$, where D is the set of points (x, y) such that $0 \le 2x/\pi \le y$, $y \le \sin x$.
- 18. From Exercise 9, Section 5.2, $\int_{a}^{b} \int_{c}^{d} f(x)g(y) \, dy \, dx = \left(\int_{a}^{b} f(x) \, dx \right)$ $\left(\int_{c}^{d} g(y) \, dy \right). \text{ Is it true that } \iint_{D} f(x)g(y) \, dx \, dy = \left(\int_{a}^{b} f(x) \, dx \right) \left(\int_{\phi_{1}(a)}^{\phi_{2}(b)} g(y) \, dy \right) \text{ for } y\text{-simple regions?}$
- 19. Let D be a region given as the set of (x, y) with $-\phi(x) \le y \le \phi(x)$ and $a \le x \le b$, where ϕ is a nonnegative continuous function on the interval [a, b]. Let f(x, y) be a function on D such that f(x, y) = -f(x, -y) for all $(x, y) \in D$. Argue that $\iint_D f(x, y) dA = 0$.
- 20. Use the methods of this section to show that the area of the parallelogram D determined by two planar vectors \mathbf{a} and \mathbf{b} is $|a_1b_2 a_2b_1|$, where $\mathbf{a} = a_1\mathbf{i} + a_2\mathbf{j}$ and $\mathbf{b} = b_1\mathbf{i} + b_2\mathbf{j}$.
- **21.** Describe the area A(D) of a region as a limit of areas of inscribed rectangles, as in Example 3.

5.4 Changing the Order of Integration

Suppose that D is a simple region—that is, it is both x-simple and y-simple. Thus, it can be given as the set of points (x, y) such that

$$a \le x \le b$$
, $\phi_1(x) \le y \le \phi_2(x)$,

and also as the set of points (x, y) such that

$$c \le y \le d$$
, $\psi_1(y) \le x < \psi_2(y)$.

area

ed for

of the icked

m of

the the

 $^{1}y dx$