PRINT Your Name: \qquad

Quiz for April 4, 2005

1. Let $\zeta=e^{\frac{2 \pi i}{17}}$ and let K be the field $\mathbb{Q}[\zeta]$. Find an element u_{2} in K with $\operatorname{dim}_{\mathbb{Q}} \mathbb{Q}\left[u_{2}\right]=4$.

ANSWER: I use Galois Theory. If $\sigma \in$ Aut $_{\mathbb{Q}} K$, then $\sigma(\zeta)$ must be a root of the minimal polynomial of ζ. So $\sigma(\zeta)$ must equal ζ^{j} for some j with $1 \leq j \leq 16$. Once we know what σ does to ζ, then we know what σ does to every element of K. Also, for each j, with $1 \leq j \leq 16$, we know that ζ and ζ^{j} have the same minimal polynomial over \mathbb{Q} and therefore there is a ring isomorphism $\sigma_{j}: \mathbb{Q}[\zeta] \rightarrow \mathbb{Q}\left[\zeta^{j}\right]$, with $\sigma_{j}(\zeta)=\zeta^{j}$. Of course, we know that $\mathbb{Q}\left[\zeta^{j}\right]=K$. Put all of the above information together to see that $\operatorname{Aut}_{\mathbb{Q}} K=\left\{\sigma_{j} \mid 1 \leq j \leq 16\right\}$. It turns out that $\mathrm{Aut}_{\mathbb{Q}} K$ is a cyclic group generated by σ_{3}. Henceforth, I will write σ in place of σ_{3}. At any rate, the subgroups of $\operatorname{Aut}_{\mathbb{Q}} K=<\sigma>$. are:

$$
<1>\subseteq<\sigma^{8}>\subseteq<\sigma^{4}>\subseteq<\sigma^{2}>\subseteq<\sigma>=\operatorname{Aut}_{\mathbb{Q}} K
$$

The Fundamental Theorem of Galois Theory tells us that the subfields of K which lie between K and \mathbb{Q} are

$$
K=K^{<1>} \supseteq K^{<\sigma^{8}>} \supseteq K^{<\sigma^{4}>} \supseteq K^{<\sigma^{2}>} \supseteq K^{<\sigma>}=\mathbb{Q} .
$$

Furthermore, for each intermediate field K^{H}, we have $\operatorname{dim}_{K^{H}} K=|H|$. So, $\operatorname{dim}_{K<\sigma^{4}>} K=4$ and therefore, $\operatorname{dim}_{\mathbb{Q}} K^{<\sigma^{4}>}$ is also 4 because $\operatorname{dim}_{\mathbb{Q}} K=16$ and $\operatorname{dim}_{\mathbb{Q}} K=\operatorname{dim}_{\mathbb{Q}} K^{<\sigma^{4}>} \operatorname{dim}_{\left.K<\sigma^{4}\right\rangle} K$.

Our job is to find $u_{2} \in K^{\left.<\sigma^{4}\right\rangle}$, with $u_{2} \notin K^{\left.<\sigma^{2}\right\rangle}$. This is easy. We notice that

$$
\sigma^{4}(\zeta)=\zeta^{13}, \quad \sigma^{4}\left(\zeta^{13}\right)=\zeta^{16}, \quad \sigma^{4}\left(\zeta^{16}\right)=\zeta^{4}, \quad \text { and } \quad \sigma^{4}\left(\zeta^{4}\right)=\zeta
$$

We take

$$
u_{2}=\zeta+\zeta^{13}+\zeta^{16}+\zeta^{4}
$$

We just calculated that $\sigma^{4}\left(u_{2}\right)=u_{2}$. Make sure you understand that claim! So, $u_{2} \in \operatorname{dim}_{K<\sigma^{4}>}$. It is clear that $u_{2} \notin K^{<\sigma^{2}>}$ because,

$$
\sigma^{2}\left(u_{2}\right)=\zeta^{9}+\zeta^{15}+\zeta^{8}+\zeta^{2}
$$

We know that $\sigma^{2}\left(u_{2}\right) \neq u_{2}$ because we know that $\left\{\zeta^{j} \mid 1 \leq j \leq 16\right\}$ is linearly independent.

If you wanted to find the minimal polynomial of u_{2} over \mathbb{Q}, then you must do some linear algebra and find a relation on $1, u_{2}, u_{2}^{2}, u_{2}^{3}, u_{2}^{4}$. The point is that I listed 5 elements from the vector space $\mathbb{Q}\left[u_{2}\right]$, but I believe that $\operatorname{dim}_{\mathbb{Q}} \mathbb{Q}\left[u_{2}\right]=4$; so the 5 elements that I listed MUST be linearly dependent. The relation on the 5 elements gives a polynomial of degree 4 that u_{2} satisfies.

