PRINT Your Name:

Quiz for April 4, 2005

1. Let $\zeta = e^{\frac{2\pi i}{17}}$ and let K be the field $\mathbb{Q}[\zeta]$. Find an element u_2 in K with $\dim_{\mathbb{Q}} \mathbb{Q}[u_2] = 4.$

ANSWER: I use Galois Theory. If $\sigma \in \operatorname{Aut}_{\mathbb{O}} K$, then $\sigma(\zeta)$ must be a root of the minimal polynomial of ζ . So $\sigma(\zeta)$ must equal ζ^j for some j with $1 \le j \le 16$. Once we know what σ does to ζ , then we know what σ does to every element of K. Also, for each j, with $1 \leq j \leq 16$, we know that ζ and ζ^{j} have the same minimal polynomial over \mathbb{Q} and therefore there is a ring isomorphism $\sigma_j \colon \mathbb{Q}[\zeta] \to \mathbb{Q}[\zeta^j]$, with $\sigma_j(\zeta) = \zeta^j$. Of course, we know that $\mathbb{Q}[\zeta^j] = K$. Put all of the above information together to see that $\operatorname{Aut}_{\mathbb{Q}} K = \{\sigma_i \mid 1 \leq j \leq 16\}$. It turns out that $\operatorname{Aut}_{\mathbb{O}} K$ is a cyclic group generated by σ_3 . Henceforth, I will write σ in place of σ_3 . At any rate, the subgroups of $\operatorname{Aut}_{\mathbb{Q}} K = <\sigma >$. are:

$$<1>\subseteq <\sigma^8>\subseteq <\sigma^4>\subseteq <\sigma^2>\subseteq <\sigma>=\operatorname{Aut}_{\mathbb Q}K.$$

The Fundamental Theorem of Galois Theory tells us that the subfields of K which lie between K and \mathbb{Q} are

$$K = K^{\langle 1 \rangle} \supseteq K^{\langle \sigma^8 \rangle} \supseteq K^{\langle \sigma^4 \rangle} \supseteq K^{\langle \sigma^2 \rangle} \supseteq K^{\langle \sigma^2 \rangle} = \mathbb{Q}.$$

Furthermore, for each intermediate field K^H , we have $\dim_{K^H} K = |H|$. So, $\dim_{K^{<\sigma^4>}} K = 4$ and therefore, $\dim_{\mathbb{Q}} K^{<\sigma^4>}$ is also 4 because $\dim_{\mathbb{Q}} K = 16$ and $\dim_{\mathbb{Q}} K = \dim_{\mathbb{Q}} K^{<\sigma^4>} \dim_{K^{<\sigma^4>}} K$. Our job is to find $u_2 \in K^{<\sigma^4>}$, with $u_2 \notin K^{<\sigma^2>}$. This is easy. We notice

that

$$\sigma^4(\zeta) = \zeta^{13}, \quad \sigma^4(\zeta^{13}) = \zeta^{16}, \quad \sigma^4(\zeta^{16}) = \zeta^4, \text{ and } \sigma^4(\zeta^4) = \zeta^4$$

We take

$$u_2 = \zeta + \zeta^{13} + \zeta^{16} + \zeta^4.$$

We just calculated that $\sigma^4(u_2) = u_2$. Make sure you understand that claim! So, $u_2 \in \dim_{K^{<\sigma^4>}}$. It is clear that $u_2 \notin K^{<\sigma^2>}$ because,

$$\sigma^2(u_2) = \zeta^9 + \zeta^{15} + \zeta^8 + \zeta^2.$$

We know that $\sigma^2(u_2) \neq u_2$ because we know that $\{\zeta^j \mid 1 \leq j \leq 16\}$ is linearly independent.

If you wanted to find the minimal polynomial of u_2 over \mathbb{Q} , then you must do some linear algebra and find a relation on $1, u_2, u_2^2, u_2^3, u_2^4$. The point is that I listed 5 elements from the vector space $\mathbb{Q}[u_2]$, but I believe that $\dim_{\mathbb{Q}} \mathbb{Q}[u_2] = 4$; so the 5 elements that I listed MUST be linearly dependent. The relation on the 5 elements gives a polynomial of degree 4 that u_2 satisfies.