PRINT Your Name:

Quiz for April 18, 2005

1. Let $K \subseteq \mathbb{C}$ be fields, and let f(x) be an irreducible polynomial in K[x]. Prove that f(x) has DISTINCT roots in \mathbb{C} .

ANSWER: This is a proof by contradiction. Suppose $\alpha \in \mathbb{C}$ is a root of f(x) of multiplicity at least 2. Let I be the ideal in K[x] of all polynomials g(x) with $g(\alpha) = 0$. We see that $f \in I$. On the other hand, f generates a maximal ideal of K[x]; so I = (f). We notice that the derivative f'(x) is a polynomial in K[x] with less degree than f(x). On the other hand, if $f(x) = (x - \alpha)^2 g(x)$ in $\mathbb{C}[x]$, then the product rule tells us that $f'(x) = (x - \alpha)^2 g'(x) + 2(x - \alpha)g(x)$; hence, $f'(\alpha) = 0$, and $f' \in I = (f)$. This is impossible because f' is not identically zero, so f' can not be a multiple of f in K[x].