\qquad

Quiz for April 18, 2005

1. Let $K \subseteq \mathbb{C}$ be fields, and let $f(x)$ be an irreducible polynomial in $K[x]$. Prove that $f(x)$ has DISTINCT roots in \mathbb{C}.

ANSWER: This is a proof by contradiction. Suppose $\alpha \in \mathbb{C}$ is a root of $f(x)$ of multiplicity at least 2 . Let I be the ideal in $K[x]$ of all polynomials $g(x)$ with $g(\alpha)=0$. We see that $f \in I$. On the other hand, f generates a maximal ideal of $K[x]$; so $I=(f)$. We notice that the derivative $f^{\prime}(x)$ is a polynomial in $K[x]$ with less degree than $f(x)$. On the other hand, if $f(x)=(x-\alpha)^{2} g(x)$ in $\mathbb{C}[x]$, then the product rule tells us that $f^{\prime}(x)=(x-\alpha)^{2} g^{\prime}(x)+2(x-\alpha) g(x)$; hence, $f^{\prime}(\alpha)=0$, and $f^{\prime} \in I=(f)$. This is impossible because f^{\prime} is not identically zero, so f^{\prime} can not be a multiple of f in $K[x]$.

