Quiz for March 16, 2005

1. Prove that a regular 7 -gon is not constructible.

ANSWER: A regular 7 -gon is constructible if and only if $\zeta=e^{\frac{2 \pi i}{7}}$ is constructible. It is clear that ζ is a root of $x^{7}-1$. It is also clear that $x^{7}-1=(x-1) g(x)$, where

$$
g(x)=x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1 .
$$

We know that ζ is not a root of $x-1$; so, ζ is a root of $g(x)$. We also proved that $g(x)$ is irreducible because 6 is equal to $p-1$, where p is the prime integer 7. (Our proof consisted of viewing $g(x)=f(x-1)$ for some polynomial $f(y)$. We used the Eisentstein criteria with $p=7$ to show that $f(y)$ is irreducible; hence, $g(x)$ is also irreducible.) At any rate, $g(x)$ is the minimal polynomial of ζ. It follows that $\operatorname{dim}_{\mathbb{Q}} \mathbb{Q}[\zeta]=6$. We proved that if u is a constructible number then $\operatorname{dim}_{\mathbb{Q}} \mathbb{Q}[u]=2^{n}$, for some integer n. We know that 6 is not a power of 2 and therefore we conclude that ζ is not constructible.

