PRINT Your Name:

Quiz for February 4, 2005

Definition. Let I be an ideal of the ring R, with $I \neq R$. The ideal I is a prime ideal of R if, whenever a and b are in R with $a b \in I$, then $a \in I$ or $b \in I$.

Definition. Let I be an ideal of the ring R, with $I \neq R$. The ideal I is a maximal ideal of R if R is the only ideal of R which properly contains I.

1. Prove that every maximal ideal is a prime ideal.

ANSWER: Let I be a maximal ideal of the ring R.
Quickest Proof. The ideal I is a maximal ideal, so R / I is a field. It follows that R / I is a domain. It now follows that I is a prime ideal in R.

A direct Proof. Suppose a and b are in R with $a b \in I$ and $a \notin I$. We will prove that b must be in I. The hypothesis that I is a maximal ideal tells us that the ideal (I, a) must be the entire ring; hence, there exist $x \in I$ and $r \in R$ with $1=x+r a$. Multiply both sides of the equation by b to see that $b=x b+r a b \in I$.

