PRINT Your Name:

Quiz for February 11, 2005

Definition. Let *I* be an ideal of the ring *R*, with $I \neq R$. The ideal *I* is a *prime ideal* of *R* if, whenever *a* and *b* are in *R* with $ab \in I$, then $a \in I$ or $b \in I$.

Definition. Let I be an ideal of the ring R, with $I \neq R$. The ideal I is a maximal ideal of R if R is the only ideal of R which properly contains I.

Definition. The domain R is a *Principal Ideal Domain* if every ideal in R is principal.

1. Prove that every non-zero prime ideal in a Principal Ideal Domain is a maximal ideal.

ANSWER: Let I be a non-zero prime ideal of the Principal Ideal Domain R. We know that I = (r) for some element r of R. Let J be an ideal of R with $I \subseteq J \subseteq R$. The ring R is a PID, so J = (s) for some element s of R. We have $r \in I \subseteq J = (s)$; so, r = st for some element t in R. The product st is in the prime ideal I. It follows that either $s \in I$ or $t \in I$.

Case 1. If $s \in I$, then s = ar for some element a in R and r = st = art. The ring R is a domain; hence, 1 = at. In other words, a is a unit and I = J.

Case 2. If $t \in I$, then t = rb for some $b \in R$ and r = st = srb. The ring R is a domain; hence, 1 = sb. In this case s is a unit and J = R.

We have shown that there do not exist any ideals J of R with $I \subsetneq J \subsetneq R$; and therefore, I is a maximal ideal of R.