Quiz for February 11, 2005

Definition. Let I be an ideal of the ring R, with $I \neq R$. The ideal I is a prime ideal of R if, whenever a and b are in R with $a b \in I$, then $a \in I$ or $b \in I$.

Definition. Let I be an ideal of the ring R, with $I \neq R$. The ideal I is a maximal ideal of R if R is the only ideal of R which properly contains I.

Definition. The domain R is a Principal Ideal Domain if every ideal in R is principal.

1. Prove that every non-zero prime ideal in a Principal Ideal Domain is a maximal ideal.

ANSWER: Let I be a non-zero prime ideal of the Principal Ideal Domain R. We know that $I=(r)$ for some element r of R. Let J be an ideal of R with $I \subseteq J \subseteq R$. The ring R is a PID, so $J=(s)$ for some element s of R. We have $r \in I \subseteq J=(s)$; so, $r=s t$ for some element t in R. The product st is in the prime ideal I. It follows that either $s \in I$ or $t \in I$.
Case 1. If $s \in I$, then $s=a r$ for some element a in R and $r=s t=a r t$. The ring R is a domain; hence, $1=a t$. In other words, a is a unit and $I=J$.
Case 2. If $t \in I$, then $t=r b$ for some $b \in R$ and $r=s t=s r b$. The ring R is a domain; hence, $1=s b$. In this case s is a unit and $J=R$.

We have shown that there do not exist any ideals J of R with $I \subsetneq J \subsetneq R$; and therefore, I is a maximal ideal of R.

