Homework Problems Math 547 April 4, 2005

1. Let $K \subseteq L$ be fields, $f(x)$ be an irreducible polynomial of $K[x]$, and α_{1} and α_{2} be elements of L with $f\left(\alpha_{1}\right)=f\left(\alpha_{2}\right)=0$. Prove that there exists a ring isomorphism $\sigma: K\left[\alpha_{1}\right] \rightarrow K\left[\alpha_{2}\right]$ with $\sigma\left(\alpha_{1}\right)=\alpha_{2}$ and $\sigma(k)=k$ for all $k \in K$.
2. Let K_{1} and K_{2} be subfields of the field L. Suppose that $\sigma: K_{1} \rightarrow K_{2}$ is a ring isomorphism. Let $f_{1}(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ be an irreducible polynomial of $K_{1}[x]$. Let $f_{2}(x)$ be the polynomial $f_{2}(x)=\sigma\left(a_{0}\right)+\sigma\left(a_{1}\right) x+\cdots+\sigma\left(a_{n}\right) x^{n}$ in $K_{2}[x]$. Let α_{1} and α_{2} be elements of L with $f_{1}\left(\alpha_{1}\right)=f_{2}\left(\alpha_{2}\right)=0$. Prove that there exists a ring isomorphism $\tau: K_{1}\left[\alpha_{1}\right] \rightarrow K_{2}\left[\alpha_{2}\right]$ with $\tau\left(\alpha_{1}\right)=\alpha_{2}$ and $\tau\left(k_{1}\right)=\sigma\left(k_{1}\right)$ for all $k_{1} \in K_{1}$.
3. Let $K \subseteq \mathbb{C}$ be fields, and let $f(x)$ be an irreducible polynomial in $K[x]$. Prove that $f(x)$ has DISTINCT roots in \mathbb{C}.
4. Let K_{1} and K_{2} be fields with $\mathbb{Q} \subseteq K_{1}, K_{2} \subseteq \mathbb{C}$. Suppose $\phi: K_{1} \rightarrow K_{2}$ is a ring isomorphism. Let $f_{1}(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ be a polynomial of $K_{1}[x]$, and let $f_{2}(x)=\varphi\left(a_{0}\right)+\varphi\left(a_{1}\right) x+\cdots+\varphi\left(a_{n}\right) x^{n}$ be the corresponding polynomial of $K_{2}[x]$. Let L_{1} be the splitting field of f_{1} over K_{1} and L_{2} be the splitting field of f_{2} over K_{2}. Let S be the set of ring homomorphisms

$$
S=\left\{\Phi: L_{1} \rightarrow L_{2} \mid \Phi(k)=\phi(k) \text { for all } k \in K_{1}\right\}
$$

Prove that the number of elements of S is equal to $\operatorname{dim}_{K_{1}} L_{1}$.
5. Let K be a subfield of $\mathbb{C}, f(x)$ be a polynomial in $K[x]$, and E be the splitting field of f over K. Prove that the number of elements of $\operatorname{Aut}_{K} E=\operatorname{dim}_{K} E$.

