Homework Problems Math 547 February 11, 2005

Suppose that the field F is a subring of the ring R. (For example, the field \mathbb{Q} is a subring of all of the following rings: $\mathbb{Q}[x], \mathbb{R}, \mathbb{Q}[i]$, and $\frac{\mathbb{Q}[x]}{I}$ for some ideal I of $\mathbb{Q}[x]$.) Notice that R is automatically a vector space over F. (Recall from your Linear Algebra class that a vector space over the field F is an abelian group V which admits scalar multiplication by elements of F. The scalar multiplication has to satisfy a handful of properties. In our situation, R is an abelain group and it is possible to multiply elements of R by elements of F (even more is possible for us). All of the rules about scalar multiplication in a vector space automatically hold in the ring R.)

1. (a) What is the dimension of the vector space $\mathbb{Q}[i]$ over the field \mathbb{Q} ? (You probably should find a basis for $\mathbb{Q}[i]$ over \mathbb{Q}. In other words, you want a set of elements from $\mathbb{Q}[i]$ which span $\mathbb{Q}[i]$ over \mathbb{Q} and are linearly independent over \mathbb{Q}. Of course, $\mathbb{Q}[i]$ is the smallest subring of \mathbb{C} which contains \mathbb{Q} and i.)
(b) Let f be the polynomial $a_{1}+a_{1} x+\cdots+a_{n-1} x^{n-1}+x^{n}$ in $\mathbb{Q}[x]$. What is the dimension of the vector space $\frac{\mathbb{Q}[x]}{(f)}$ over \mathbb{Q} ?
(c) Suppose that $E \subseteq F \subseteq K$ are fields and that u_{1}, \ldots, u_{n} is a basis of F over E and that v_{1}, \ldots, v_{m} is a basis of K over F. Prove that $\left\{u_{i} v_{j} \mid 1 \leq i \leq n, 1 \leq j \leq m\right\}$ is a basis for K over E.
(d) Let $\mathbb{Q}(\sqrt{2}, i)$ be the smallest subfield of \mathbb{C} which contains $\sqrt{2}, i$, and \mathbb{Q}. Find a basis for $\mathbb{Q}(\sqrt{2}, i)$ over \mathbb{Q}.
2. (a) Let α be a complex number. Suppose that the ring $\mathbb{Q}[\alpha]$ has finite dimension as a vector space over \mathbb{Q}. Prove that $\mathbb{Q}[\alpha]$ is a field. (As always, $\mathbb{Q}[\alpha]$ is the smallest ring which contains \mathbb{Q} and α.)
(b) If $\alpha=e^{\frac{2 \pi i}{23}}$, then what is the dimension of $\mathbb{Q}[\alpha]$ over \mathbb{Q} ?
(c) Give an example of a complex number α for which $\mathbb{Q}[\alpha]$ is an infinite dimensional vector space over \mathbb{Q}.
(d) Let $E \subseteq F$ be fields. Suppose that the dimension of F as a vector space over E is a prime integer. Prove that if u is any element of F with $u \notin E$, then $F=E[u]$.
(e) Prove that there aren't any rings R with $\mathbb{Q} \subsetneq R \subsetneq \mathbb{Q}[\sqrt[7]{2}]$.
