Homework Problems Math 547 February 11, 2005

Suppose that the field F is a subring of the ring R. (For example, the field \mathbb{Q} is a subring of all of the following rings: $\mathbb{Q}[x]$, \mathbb{R} , $\mathbb{Q}[i]$, and $\frac{\mathbb{Q}[x]}{I}$ for some ideal I of $\mathbb{Q}[x]$.) Notice that R is automatically a vector space over F. (Recall from your Linear Algebra class that a vector space over the field F is an abelian group V which admits scalar multiplication by elements of F. The scalar multiplication has to satisfy a handful of properties. In our situation, R is an abelain group and it is possible to multiply elements of R by elements of F (even more is possible for us). All of the rules about scalar multiplication in a vector space automatically hold in the ring R.)

- (a) What is the dimension of the vector space Q[i] over the field Q? (You probably should find a basis for Q[i] over Q. In other words, you want a set of elements from Q[i] which span Q[i] over Q and are linearly independent over Q. Of course, Q[i] is the smallest subring of C which contains Q and i.)
 - (b) Let f be the polynomial $a_1 + a_1x + \dots + a_{n-1}x^{n-1} + x^n$ in $\mathbb{Q}[x]$. What is the dimension of the vector space $\frac{\mathbb{Q}[x]}{(f)}$ over \mathbb{Q} ?
 - (c) Suppose that $E \subseteq F \subseteq K$ are fields and that u_1, \ldots, u_n is a basis of F over E and that v_1, \ldots, v_m is a basis of K over F. Prove that $\{u_i v_j \mid 1 \leq i \leq n, 1 \leq j \leq m\}$ is a basis for K over E.
 - (d) Let $\mathbb{Q}(\sqrt{2}, i)$ be the smallest subfield of \mathbb{C} which contains $\sqrt{2}$, i, and \mathbb{Q} . Find a basis for $\mathbb{Q}(\sqrt{2}, i)$ over \mathbb{Q} .
- 2. (a) Let α be a complex number. Suppose that the ring $\mathbb{Q}[\alpha]$ has finite dimension as a vector space over \mathbb{Q} . Prove that $\mathbb{Q}[\alpha]$ is a field. (As always, $\mathbb{Q}[\alpha]$ is the smallest ring which contains \mathbb{Q} and α .)
 - (b) If $\alpha = e^{\frac{2\pi i}{23}}$, then what is the dimension of $\mathbb{Q}[\alpha]$ over \mathbb{Q} ?
 - (c) Give an example of a complex number α for which $\mathbb{Q}[\alpha]$ is an infinite dimensional vector space over \mathbb{Q} .
 - (d) Let $E \subseteq F$ be fields. Suppose that the dimension of F as a vector space over E is a prime integer. Prove that if u is any element of F with $u \notin E$, then F = E[u].
 - (e) Prove that there aren't any rings R with $\mathbb{Q} \subsetneq R \subsetneq \mathbb{Q}[\sqrt[7]{2}]$.