Homework Problems Math 547 January 29, 2005 CORRECTED.

Definition. Let I be an ideal of the ring R, with $I \neq R$. The ideal I is a prime ideal of R if, whenever a and b are in R with $a b \in I$, then $a \in I$ or $b \in I$.
Definition. Let I be an ideal of the ring R, with $I \neq R$. The ideal I is a maximal ideal of R if R is the only ideal of R which properly contains I.

Definition. The domain R is a Principal Ideal Domain if every ideal in R is principal.

1. (a) Prove that every maximal ideal is a prime ideal.
(b) Give an example of a non-zero prime ideal which is not a maximal ideal.
(c) Prove that every non-zero prime ideal in a Principal Ideal Domain is a maximal ideal.

Definition. The element u of the ring R is called a unit if u has a multiplicative inverse in R.

Definition. The element r of the ring R is called irreducible if r is not zero, r is not a unit, and whenever $r=s t$ in R, then either s is a unit or t is a unit.
2. Let R be the ring $\mathbb{Z}[\sqrt{-5}]=\{a+b \sqrt{-5} \in \mathbb{C} \mid a, b \in \mathbb{Z}\}$.
(a) Prove that 1 and -1 are the only units in R.
(b) Prove that $2,3,1+\sqrt{-5}$, and $1-\sqrt{-5}$ all are irreducible elements of the ring R.
(c) Notice that none of the elements of R from (b) is a unit of R times a different element from (b).
(d) Show that 6 can be factored into irreducible elements of R in two different ways.
3. (a) (This is called Gauss' Lemma.) Let $f(x)$ and $g(x)$ be polynomials in $\mathbb{Z}[x]$. Suppose that the coefficients of $f(x)$ are relatively prime. Suppose that the coefficients of $g(x)$ are relatively prime. Prove that the coefficients of $f(x) g(x)$ are relatively prime.
(b) Let $f(x)$ be a polynomial in $\mathbb{Z}[x]$ with relatively prime coefficients. Suppose $f(x)$ is irreducible in $\mathbb{Z}[x]$. Prove $f(x)$ is irreducible in $\mathbb{Q}[x]$.
(c) (This is called the Eisenstein Criteria.) Let $f(x)=a_{0}+a_{1} x+\ldots a_{n} x^{n}$ be a polynomial in $\mathbb{Z}[x]$ with relatively prime coefficients. Suppose that p is a prime integer such that p divides $a_{0}, a_{1}, \ldots, a_{n-1}, p^{2}$ does not divide a_{0}, and p does not divide a_{n}. Prove that $f(x)$ is an irreducible polynomial in $\mathbb{Q}[x]$.
(d) Prove that $x^{2}-2, x^{5}-2, x^{15}+3 x+6$ are irreducible polynomials in $\mathbb{Q}[x]$.
(e) Let p be a prime integer. Prove that $1+x+x^{2}+\cdots+x^{p-1}$ is an irreducible polynomial in $\mathbb{Q}[x]$.

