
Math 547, Final Exam, Spring , 2005
The exam is worth 100 points. Each problem is worth 11 1/9 points.

Write your answers as legibly as you can on the blank sheets of paper provided.
Use only one side of each sheet. Take enough space for each problem. Turn in
your solutions in the order: problem 1, problem 2, . . . ; although, by using enough
paper, you can do the problems in any order that suits you.

I will e-mail your grade to you as soon as I finish grading the exams.

I will post the solutions on my website later today.

1. Let K ⊆ L be fields, f(x) be a polynomial in K[x] , σ ∈ AutK L , and
` ∈ L . Suppose that f(`) = 0 . Prove f(σ(`)) = 0 . Give all details.

Let f(x) =
n
∑

j=0

kjx
j , with each kj ∈ K . We have 0 = f(`) . Apply the ring

homomorphism σ to both sides to get

0 = σ(0) = σ(f(`)) = σ





n
∑

j=0

kj`
j



 =
n

∑

j=0

σ(kj)(σ(`))j.

The hypothesis also tells us that σ(kj) = kj for all j ; so

0 =

n
∑

j=0

kj(σ(`))j = f(σ(`)).

2. Let K ⊆ L be fields, f(x) be an irreducible polynomial of K[x] , and
α1 and α2 be elements of L with f(α1) = f(α2) = 0 . Prove that
there exists a ring isomorphism σ : K[α1] → K[α2] with σ(α1) = α2 and
σ(k) = k for all k ∈ K . Give all details.

There is a surjective ring homomorphism φ1 : K[x] → K[α1] with φ1(g(x)) = g(α1)
for all g(x) ∈ K[x] . The kernel of φ1 is generated by the minimal polynomial f(x)
of α1 . The first isomorphism theorem ensures the existence of a ring isomorphism
with φ̄1(ḡ) = φ1(g) = g(α1) for all g ∈ K[x] . We repeat the above procedure to
produce a ring isomorphism φ̄2 : K[x]/(f(x)) → K[α2] , with φ̄2(ḡ) = g(α2) for
all g ∈ K[x] . It follows that φ̄2 ◦ φ̄−1

1
: K[α1] → K[α2] is a ring isomorphism. It

is clear that
φ̄2 ◦ φ̄−1

1
(α1) = φ̄2(x̄) = α2.

3. State the Fundamental Theorem of Galois Theory. Please give
hypotheses and conclusions.

Let K be a field with Q ⊆ K ⊆ C , let f(x) be a polynomial in K[x] , and let F
be the splitting field of f over K . Then
a. |AutK F | = dimK F .
b. There is a one-to-one, inclusion reversing, correspondence between the

subgroups H of AutK F and the intermediate fields E with K ⊆ E ⊆ F .
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The correspondence is given as follows. If H is a subgroup of AutK F , then
the corresponding field is F H , which is defined to be

{α ∈ F | σ(α) = α, for all σ ∈ H }.

If E is a field with K ⊆ E ⊆ F , then the corresponding group is

AutE F = {σ ∈ AutK F | σ(e) = e for all e ∈ E }.

c. If F H is one of the fields with K ⊆ F H ⊆ F for some subgroup H of AutK F ,
then dimF H F = |H| .

4. Let I be an ideal of the ring R . Prove that I is a maximal ideal of
R if and only if R/I is a field.

⇒ We need show that each non-zero element of R
I

has a multiplicative inverse in
R
I

. Pick a non-zero element of R
I

. This element has the form ā where a is an
element of R which is not an element of I . We must show that the element ā of
R
I

has an inverse in R
I

.
Let (I, a) denote the smallest ideal of R which contains I and a . Observe that

(I, a) = {m + ra | m ∈ I and r ∈ R} . The hypothesis ensures us that (I, a) = R .
In other words, there exist elements m ∈ I and r ∈ R with 1 = m + ra . We
conclude that r̄ is the inverse of ā in R

I
.

⇐ Suppose J is an ideal of R with I ( J . Let j ∈ J with j /∈ I . The
hypothesis that R/I is a field ensures that there exists an element r of R with
rj − 1 ∈ I . It follows that 1 is equal to rj plus an element of I . Thus, 1 ∈ J
and J is equal to all of R .

5. Prove that Q[x] is a Principal Ideal Domain.

Let I be a non-zero ideal in Q[x] . Let f be a non-zero polynomial in I of least
degree. We show that I = (f) . It is clear that (f) ⊆ I . We show that I ⊆ (f) .
Let g be an arbitrary element of I . Divide f into g and get g = hf + r for
polynomials h and r of Q[x] where either r is the zero polynomial or r has
degree less than the degree of f . We see that r = g−hf ∈ I . We chose f to be a
non-zero polynomial in I of least degree. It follows that r is the zero polynomial
and g ∈ (f) .

6. Let I be an ideal in a Principal Ideal Domain R . Prove that the
following statements are equivalent. (That is, if one of the statements
is true, then they all are true. If one of the statements is false, then
they all are false.)
(a) There is an irreducible element r of R with I = (r) .
(b) The ideal I is a non-zero prime ideal.
(c) The ideal I is a maximal ideal.

(a) =⇒ (c) Suppose J is an ideal of R with I ( J . The ring R is a Principal
ideal domain, so J = (j) for some element j of R . The fact that f ∈ I ⊂ J = (j)
tells us that f = jr for some r in R . The fact that I 6= J tells us that r is not
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a unit in R . The hypothesis that f is irreducible ensures that j is a unit of R ;
hence, J = R , and I is a maximal ideal of R .

(c) =⇒ (b) It is always true that every maximal ideal is a prime ideal. Indeed, if
I is a maximal ideal, then R/I is a field; hence, R/I is a domain; hence, I is a
prime ideal.

(b) =⇒ (a) The ring R is a Principal ideal domain; so, I = (r) for some r in
R . We must show that r is irreducible. Suppose r = st for some s, t in R . The
hypothesis that I is prime ensures that at least one of s or t is in I . We may
assume, without loss of generality, that s is in I . So, s = rw for some w in R
and r = st = rwt . The ring R is a domain; so 1 = wt and t is a unit. We have
shown that in every factorization of r , one of the factors must be a unit. Thus, r
is irreducible.

7. Let K be the splitting field of x5 − 2 over Q . We have shown that

K = Q[ 5
√

2, ω] , where ω = e
2πi

5 . We have also shown that dimQ K = 20 ,
and that there exist auotmorphisms σ, τ in AutQ K with

σ(
5
√

2) =
5
√

2 σ(ω) = ω2

τ(
5
√

2) = ω
5
√

2 τ(ω) = ω.

Furthermore we have shown that AutQ K is generated by σ and τ .
You do not have to re-prove any of the above facts. However, I do
want complete details for the following things: Find a field E with
Q ⊆ E ⊆ K and dimQ E = 2 . Find the subgroup H of AutQ K with
KH = E . (“Find” means tell me generators.)

Let u = ω+ω4 and E = Q[u] . It is clear that u /∈ Q ; indeed, σ(u) = ω2+ω3 6= u .
It is easy to see that u satisfies a quadratic polynomial with coefficients in Q .
Indeed, u2 = ω2 + ω3 + 2 ; so

u + u2 = (ω + ω2 + ω3 + ω4) + 2 = −1 + 2 = 1.

Thus, u is a root of x2 + x − 1 = 0 , and dimQ E = 2 . I notice that τ(u) = u
and σ2(u) = u . Thus, <σ2, τ> is a subgroup of H . The fundamental Theorem
of Galois Theory tells us that H has 10 elements. Lagrange’s Theorem tells us
that 2 , which is equal to the order of σ2 and 5 , which is equal to the order of
τ , each divide the order of <σ2, τ> . It follows that <σ2, τ> has order 10 and
is equal to H .

8. Let H be the subgroup <(1, 2, 3, 4), (1, 3)> of S4 . Let S4/H be the
set of left cosets of H in S4 . Let H act on S4/H by left translation.
In other words, if h is in H and gH is a left coset of H in S4 (i.e.,
g ∈ S4 ), then h sends gH to the left coset hgH .
(a) Find the orbit of each element of S4/H .
(b) Find the normalizer of H in S4 . Recall that the normalizer of H

in S4 is
NS4

(H) = {g ∈ S4 | gHg−1 = H}.
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We see that

H = {(1), (1, 2, 3, 4), (1, 3)(2, 4), (1, 4, 3, 2), (1, 3), (1, 2)(3, 4), (2, 4), (1, 4)(2, 3)},

(1, 2)H = {(1, 2), (2, 3, 4), (1, 3, 2, 4), (1, 3, 2, 4), (1, 4, 3), (1, 3, 2),(3, 4), (1, 2, 4),

(1, 4, 2, 3)},

and

(1, 4)H = {(1, 4), (1, 2, 3), (1, 3, 4, 2), (2, 4, 3), (1, 3, 4), (1, 2, 4, 3), (1, 4, 2), (2, 3)}

It is clear that the orbit of H is {H} . We see that (1), (1, 3)(2, 4), (1, 2)(3, 4) ,
and (1, 4)(2, 3) all carry (1, 2)H to (1, 2)H , and (1, 2, 3, 4), (1, 4, 3, 2), (1, 2, 3) ,
and (2, 4) all carry (1, 2)H to (1, 4)H . We conclude that the orbit of (1, 2)H is
{(1, 2)H, (1, 4)H} . The normalizer of H in S4 is the union of all of the cosets
which have orbits consisting of only one element. So, the normalizer of H in S4

is simply H . (Of course, you know that NS4
(H) = H without doing any work.

Indeed, NS4
(H) is a subgroup of S4 , with H a normal subgroup of NS4

(H) .
The only subgroups of S4 which contain H are S4 and H . It is easy to see that
H is not a normal subgroup of S4 ; so we see that NS4

(H) = H .)

9. Let K be the splitting field of x17−1 over Q . We know that K = Q[ω] ,

for ω = e
2πi

17 . We also know that AutQ K is the cyclic group of order
16 which is generated by the automorphism σ where σ(ω) = ω3 .
You do not have to re-prove any of the above facts. However, I do
want complete details for the following things: Find a subgroup H of
AutQ K with 8 elements. Find the field KH . (“Find” means tell me
generators.)

The element σ2 of AutQ K has order 8 ; so H is generated by σ2 . We see that
σ2 carries

ω 7→ ω9 7→ ω13 7→ ω15 7→ ω16 7→ ω8 7→ ω4 7→ ω2 7→ ω.

It follows that if

u = ω + ω9 + ω13 + ω15 + ω16 + ω8 + ω4 + ω2,

then σ2(u) = u . Thus, u ∈ KH . On the other hand, σ moves u , so u /∈ Q . The
fact that dimQ KH = 2 ensures that there do not exist any field properly between
Q and KH ; and therefore, KH = Q[u] .


