
Math 547, Exam 4, Spring , 2005 Solutions

The exam is worth 50 points. Each problem is worth 10 points.

Write your answers as legibly as you can on the blank sheets of paper provided.
Use only one side of each sheet. Take enough space for each problem. Turn in
your solutions in the order: problem 1, problem 2, . . . ; although, by using enough
paper, you can do the problems in any order that suits you.

I will e-mail your grade to you as soon as I finish grading the exams.

If you want me to leave your exam outside my door (so that you can pick it up
before Wednesday’s class), then TELL ME and I will do it. The exam will be
there as soon as I e-mail your grade to you.

I will post the solutions on my website later today.

1. Let K ⊆ L be fields, f(x) be a polynomial in K[x] , σ ∈ AutK L , and
` ∈ L . Suppose that f(`) = 0 . Prove f(σ(`)) = 0 . Give all details.

Let f(x) =
n∑

j=0

kjx
j , with each kj ∈ K . We have 0 = f(`) . Apply the ring

homomorphism σ to both sides to get

0 = σ(0) = σ(f(`)) = σ





n∑

j=0

kj`
j



 =

n∑

j=0

σ(kj)(σ(`))j.

The hypothesis also tells us that σ(kj) = kj for all j ; so

0 =

n∑

j=0

kj(σ(`))j = f(σ(`)).

2. Let K ⊆ L be fields, f(x) be an irreducible polynomial of K[x] , and
α1 and α2 be elements of L with f(α1) = f(α2) = 0 . Prove that
there exists a ring isomorphism σ : K[α1] → K[α2] with σ(α1) = α2 and
σ(k) = k for all k ∈ K . Give all details.

There is a surjective ring homomorphism φ1 : K[x] → K[α1] with φ1(g(x)) = g(α1)
for all g(x) ∈ K[x] . The kernel of φ1 is generated by the minimal polynomial f(x)
of α1 . The first isomorphism theorem ensures the existence of a ring isomorphism
with φ̄1(ḡ) = φ1(g) = g(α1) for all g ∈ K[x] . We repeat the above procedure to
produce a ring isomorphism φ̄2 : K[x]/(f(x)) → K[α2] , with φ̄2(ḡ) = g(α2) for
all g ∈ K[x] . It follows that φ̄2 ◦ φ̄−1

1 : K[α1] → K[α2] is a ring isomorphism. It
is clear that

φ̄2 ◦ φ̄−1
1 (α1) = φ̄2(x̄) = α2.
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3. State the Fundamental Theorem of Galois Theory. Please give
hypotheses and conclusions.

Let K be a field with Q ⊆ K ⊆ C , let f(x) be a polynomial in K[x] , and let F
be the splitting field of f over K . Then

a. |AutK F | = dimK F .

b. There is a one-to-one, inclusion reversing, correspondence between the
subgroups H of AutK F and the intermediate fields E with K ⊆ E ⊆ F .
The correspondence is given as follows. If H is a subgroup of AutK F , then
the corresponding field is F H , which is defined to be

{α ∈ F | σ(α) = α, for all σ ∈ H }.

If E is a field with K ⊆ E ⊆ F , then the corresponding group is

AutE F = {σ ∈ AutK F | σ(e) = e for all e ∈ E }.

c. If F H is one of the fields with K ⊆ F H ⊆ F for some subgroup H of AutK F ,
then dimF H F = |H| .

4. Let F be the splitting field of f(x) = x3 − 2 over Q . Find all fields K
with Q ⊆ K ⊆ F . Give complete details.

The roots of f in C are r1 = θ , r2 = ωθ , and r3 = ω2θ , where θ = 3
√

2 , and

ω = e
2πi

3 . It follows that K = Q[θ, ω] . The polynomial f is irreducible over
Q by the Eisenstein criteria; so, f is the minimal polynomial of θ over Q ; and
dimQ Q[θ] = 3 . We know that ω is a root of g(x) = x2 + x + 1 . Furthermore,
g(x) is irreducible over Q[θ] because the only possible factorization would be a
factorization into linear factors. We know that g does not factor into linear factors
over Q[θ] because the roots of g are ω and ω2 . Neither of these roots are real
numbers and Q[θ] ⊆ R . It follows that dimQ[θ] F = 2 . We now use problem 2

to produce an automorphism σ of F which fixes Q[θ] and sends ω to ω2 . We
know that

6 = dimQ F = dimQ Q[ω]
︸ ︷︷ ︸

2

dimQ[ω] F.

It follows that f is the minimal polynomial of θ over Q[ω] . We use problem 2
again to produce an automorphism τ of F which fixes Q[ω] and sends θ to θω .
We notice that on the roots of f : r1 = θ , r2 = ωθ , r3 = ω2θ , the action of
σ is (2, 3) and the action of τ is (1, 2, 3) , The permutations (2, 3) and (1, 2, 3)
generate all of S3 and AutQ F is a subgroup of S3 . We conclude that σ and τ
generate AutQ F and AutQ F = S3 . The subgroups of S3 are S3 , <(1, 2, 3)> ,
<(1, 2)> , <(1, 3)> , <(2, 3)> , and <(1)> . The corresponding fields are:

FS3 = Q, F <(1,2,3)> = Q[ω], F <(1,2)> = Q[ω2θ], F <(1,3)> = Q[ωθ],

F<(2,3)> = Q[θ], F <(1)> = F.
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5. We know that x9 − 1 = (x3 − 1)(x6 + x3 + 1) . We also know that
g(x) = x6 + x3 + 1 is irreducible over Q . (There is no need to re-
prove these facts.) Let F be the splitting field of g(x) over Q . Find
AutQ F . Be sure to tell me the elements of AutQ F as well as the group
structure. Give complete details.

The roots of g in C are ζ , ζ2 , ζ4 , ζ5 , ζ7 , ζ8 . So, F = Q[ζ] , and dimQ F = 6 .
If σ is in AutQ F , then the entire action of σ is completely determined by the
value of σ(ζ) . Problem 1 tells us that σ(ζ) must be ζj for j ∈ {1, 2, 4, 5, 7, 8} .
Problem 2 tells us that each of the six listed candidates for σ really is a ring
isomorphism. So, we have learned that AutQ F consists of the six functions
σj(ζ) = ζj for j ∈ {1, 2, 4, 5, 7, 8} . It is easy to see that σ2 generates this group.
Indeed,

σ2
2 = σ4, σ3

2 = σ8, σ4
2 = σ7, σ5

2 = σ5, σ6
2 = σ1.

We conclude that AutQ F is the cyclic group of order six which is generated by
the function σ2 .


