Math 547, Exam 1, Spring, 2005

The exam is worth 50 points.

Write your answers as legibly as you can on the blank sheets of paper provided. Use only **one side** of each sheet. Take enough space for each problem. Turn in your solutions in the order: problem 1, problem 2, \ldots ; although, by using enough paper, you can do the problems in any order that suits you.

I will e-mail your grade to you.

I will post the solutions on my website later today.

1. (7 points) Let

 $S = \{ \frac{a}{b} \in \mathbb{Q} | \text{either } a = 0 \text{, or } a \text{ and } b \text{ are relatively prime integers and } 3 \text{ does not divide } b \}.$

- Is S a subring of \mathbb{Q} ? Explain.
- 2. (7 points) Let

 $S = \{ \frac{a}{b} \in \mathbb{Q} | \text{either } a = 0 \text{, or } a \text{ and } b \text{ are relatively prime integers and } 9 \text{ does not divide } b \}.$

Is S a subring of \mathbb{Q} ? Explain.

- 3. (7 points) Let $\phi : \mathbb{Z}[x] \to \mathbb{Z}[x]$ be the function which is given by $\phi(f(x)) = (f(x))^2$. Is ϕ a ring homomorphism? Explain.
- 4. (7 points) Let $\phi: \frac{\mathbb{Z}}{(2)}[x] \to \frac{\mathbb{Z}}{(2)}[x]$ be the function which is given by $\phi(f(x)) = (f(x))^2$. Is ϕ a ring homomorphism? Explain.
- 5. (7 points) Let $\phi: \mathbb{Q}[x] \to \mathbb{C}$ be the function which is given by $\phi(f(x)) = f(\sqrt{2})$. All of us know that this function is a ring homomorphism; you do not have to show me a proof. What is the kernel of ϕ ? Prove your answer.
- 6. (8 points) Let $\phi: R \to S$ be a ring homomorphism. (a) Prove that $\phi(0) = 0$.
 - (b) Prove that ϕ is one-to-one if and only if ker $\phi = \{0\}$.
- 7. (7 points) Let M be an ideal of the ring R. Suppose that $M \neq R$ and that R is the only ideal of R which properly contains M. Prove that $\frac{R}{M}$ is a field.