Math 546, Exam 4, Summer, 2002

PRINT Your Name: \qquad
There are 10 problems on 5 pages. Each problem is worth 5 points.
Neither your exam, nor your score, will not be available until class on Monday.

1. Define "group isomorphism". Use complete sentences.
2. Let d be the greatest common divisor of the integers a and b. Prove that there exist integers r and s with $d=r a+s b$.
3. Let G be the subgroup of $(\mathbb{Z},+)$ which consists of all multiples of 3 . Consider the function $\varphi: \mathbb{Z} \rightarrow G$ which is given by $\varphi(n)=3 n$ for all integers n. Prove that φ is an isomorphism.
4. Prove that the groups $\left(\mathbb{Z}_{4},+\right)$ and $\left(\mathbb{Z}_{8}^{\times}, \times\right)$are not isomorphic. The proof does not have to be long, but it does have to be clear.
5. Recall that each element of S_{4} is a function from $\{1,2,3,4\}$ to $\{1,2,3,4\}$. Let

$$
T=\left\{\sigma \in S_{4} \mid \sigma(1)=1\right\} .
$$

Is T a subgroup of S_{4} ? Prove your answer.
6. Recall that each element of S_{4} is a function from $\{1,2,3,4\}$ to $\{1,2,3,4\}$. Let

$$
W=\left\{\sigma \in S_{4} \mid \sigma(1) \text { is equal to either } 1 \text { or } 2\right\} .
$$

Is W a subgroup of S_{4} ? Prove your answer.
7. How many elements of S_{4} have order 2?
8. Let $\mathbb{R}^{\text {pos }}$ represent the group of positive real numbers under multiplication. Exhibit an isomorphism from the group $\mathbb{R}^{\text {pos }} \times U$ to the group $(\mathbb{C} \backslash\{0\}, \times)$. Prove that your isomorphism really is an isomorphism.
9. Is the group $D_{4} \times U_{3}$ isomorphic to the group S_{4} ? Exhibit an isomorphism or prove that the groups are not isomorphic.
10. Express the permutation $(6,9)(4,7,9)(4,8)$ as a product of disjoint cycles.

