PRINT Your Name: \qquad
There are 8 problems on 5 pages. Problems 1 and 2 are worth 7 points each. Each of the other problems is worth 6 points.

1. Define "group". Use complete sentences.
2. Define "subgroup". Use complete sentences.
3. Define $*$ on $\mathbb{Q} \backslash\{0\}$ by $a * b=\frac{a}{b}$. Is $(\mathbb{Q} \backslash\{0\}, *)$ a group? Why or why not?
4. Recall that $\mathrm{GL}_{2}(\mathbb{R})$ represents the group of invertible 2×2 matrices with real number entries. The operation in $\mathrm{GL}_{2}(\mathbb{R})$ is matrix multiplication. The matrix

$$
A=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]
$$

is an element of $\mathrm{GL}_{2}(\mathbb{R})$. What is A 's inverse?
5. Let $T=\mathbb{R} \backslash\{-2\}$. Define $*$ on T by $a * b=a b+2 a+2 b+2$. Proof that $(T, *)$ is a group.
6. Recall that D_{3} is the smallest subgroup of the group of rigid motions which contains ρ and σ, where ρ is rotation counter clockwise by 120° fixing the origin and σ is reflection of the $x y$ plane across the x axis. List 4 subgroups of D_{3} in addition to D_{3} and \{id\}. (I do not need to see any details.)
7. The Dihedral group D_{4} consists of 8 elements id, $\rho, \rho^{2}, \rho^{3}, \sigma, \sigma \rho, \sigma \rho^{2}$, and $\sigma \rho^{3}$. In class we calculated that $\rho \sigma=\sigma \rho^{3}, \rho^{4}=\mathrm{id}$, and $\sigma^{2}=\mathrm{id}$. Express $\rho^{2} \sigma \rho \sigma$ in the form $\sigma^{i} \rho^{j}$ for some integers i and j, with $0 \leq i \leq 1$, and $0 \leq j \leq 3$.
8. Consider $L=\{n \in \mathbb{Z} \mid n \leq 7\}$. For a and b in L, define $a * b=\min \{a, b\}$. Does $(L, *)$ have an identity element? If yes, what is it and why does it work? If no, why not? (I know that $(L, *)$ is not a group. You do not have to show that, but you do have to answer my question.)

