Math 546, Exam 1, Summer 2002

PRINT Your Name:____

There are 8 problems on 5 pages. Problems 1 and 2 are worth 7 points each. Each of the other problems is worth 6 points.

- 1. Define "group". Use complete sentences.
- 2. Define "subgroup". Use complete sentences.
- 3. Define * on $\mathbb{Q} \setminus \{0\}$ by $a * b = \frac{a}{b}$. Is $(\mathbb{Q} \setminus \{0\}, *)$ a group? Why or why not?
- 4. Recall that $\operatorname{GL}_2(\mathbb{R})$ represents the group of invertible 2×2 matrices with real number entries. The operation in $\operatorname{GL}_2(\mathbb{R})$ is matrix multiplication. The matrix

$$A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$$

is an element of $\operatorname{GL}_2(\mathbb{R})$. What is A 's inverse?

- 5. Let $T = \mathbb{R} \setminus \{-2\}$. Define * on T by a * b = ab + 2a + 2b + 2. Proof that (T, *) is a group.
- 6. Recall that D_3 is the smallest subgroup of the group of rigid motions which contains ρ and σ , where ρ is rotation counter clockwise by 120° fixing the origin and σ is reflection of the xy plane across the x axis. List 4 subgroups of D_3 in addition to D_3 and {id}. (I do not need to see any details.)
- 7. The Dihedral group D_4 consists of 8 elements id, ρ , ρ^2 , ρ^3 , σ , $\sigma\rho$, $\sigma\rho^2$, and $\sigma\rho^3$. In class we calculated that $\rho\sigma = \sigma\rho^3$, $\rho^4 = \mathrm{id}$, and $\sigma^2 = \mathrm{id}$. Express $\rho^2 \sigma \rho \sigma$ in the form $\sigma^i \rho^j$ for some integers *i* and *j*, with $0 \leq i \leq 1$, and $0 \leq j \leq 3$.
- 8. Consider $L = \{n \in \mathbb{Z} \mid n \leq 7\}$. For a and b in L, define $a * b = \min\{a, b\}$. Does (L, *) have an identity element? If yes, what is it and why does it work? If no, why not? (I know that (L, *) is not a group. You do not have to show that, but you do have to answer my question.)