PRINT Your Name: \qquad

Quiz for March 4, 2010

The quiz is worth 5 points. Remove EVERYTHING from your desk except this quiz and a pen or pencil.

Suppose that H is a subgroup of the group G with the property that $g h g^{-1}$ is in H for all $g \in G$ and h in H. Let a, b, and c be elements of G with $a H=b H$, prove that $a c H=b c H$.
ANSWER: We are told that there exists $h_{0} \in H$ with $a=b h_{0}$.
We first show that $a c H \subseteq b c H$. Take an arbitrary element $a c h$ of $a c H$ for some h in H. We see that

$$
a c h=b h_{0} c h=b c\left(c^{-1} h_{0} c\right) h
$$

The hypothesis ensures that $c^{-1} h_{0} c$ is an element of H. The set H is a group; so H is closed and $\left(c^{-1} h_{0} c\right) h \in H$. Thus, ach is equal to $b c$ times an element of H and $a c h$ is in the left coset $b c H$.

Now we show that $b c H \subseteq a c H$. Take an arbitrary element $b c h$ of $b c H$ for some h in H. We see that

$$
b c h=a h_{0}^{-1} c h=a c\left(c^{-1} h_{0}^{-1} c\right) h
$$

The hypothesis ensures that $c^{-1} h_{0}^{-1} c$ is an element of H. The set H is a group; so H is closed and $\left(c^{-1} h_{0}^{-1} c\right) h \in H$. Thus, $b c h$ is equal to $a c$ times an element of H and $b c h$ is in the left coset $a c H$.

