PRINT Your Name: \qquad

Quiz for February 4, 2010

The quiz is worth 5 points. Remove EVERYTHING from your desk except this quiz and a pen or pencil.
Let G be a group, and let $a \in G$. Define the centralizer of a to be the set of elements in G that commute with a; that is, $C(a)=\{x \in G \mid x a=a x\}$.
(a) Prove that $C(a)$ is a subgroup of G.
(b) List the elements in the centralizer of σ in D_{4}. Explain what you are doing.

ANSWER: We start with (a).
Closure: Take x and y in $C(a)$. We show that $x y$ is in $C(a)$. We show that $(x y) a=a(x y)$. We use associativity and the fact that y is in $C(a)$ to see that

$$
(x y) a=x(y a)=x(a y)
$$

Now we use associativity (twice) and the fact that x is in $C(a)$ to see:

$$
x(a y)=(x a) y=(a x) y=a(x y)
$$

Thus, $(x y) a=a(x y)$, as required.
Associativity: The operation is associative on all of G; so it is also associative on the subset $C(a)$ of G.
Identity: The identity element of G commutes with evey element of G; hence, the idenity element of G commutes with a and is in $C(a)$.
Inverses: Let x be an element of $C(a)$. We know that x has an inverse in G; let us call that inverse y. We would like to show that y is in $C(a)$. Start with the statement $x a=a x$ (which holds because $x \in C(a)$. Multiply on the left by y and multiply on the right by y :

$$
y(x a) y=y(a x) y \text {. }
$$

Associate like crazy:

$$
a y=(y x) a y=y(x a) y=y(a x) y=y a(x y)=y a
$$

to see that $a y=y a$; hence, $y \in C(a)$.
Now we do (b). We see that $C(\sigma)=\left\{\mathrm{id}, \sigma, \rho^{2}, \sigma \rho\right\}$. It is not hard to see that the listed elements commute with σ. Maybe the only interesting one is:

$$
\sigma \rho^{2}=\rho^{3} \sigma \rho=\rho^{3} \rho^{3} \sigma=\rho^{2} \sigma
$$

It is also not hard to see that σ does not commute with ρ or ρ^{3} because $\rho \sigma=\sigma \rho^{3}$. Similarily one checks that σ does not commute with $\sigma \rho$ or $\sigma \rho^{3}$.

