PRINT Your Name:

Quiz for April 15, 2010

The quiz is worth 5 points. Remove EVERYTHING from your desk except this quiz and a pen or pencil.

Exhibit an isomorphism $\phi: U \to G$, where U is the unit circle group and G is a subgroup of $\operatorname{GL}_2(\mathbb{R})$. Tell me what G is. Tell me what ϕ is. Prove that ϕ is an isomorphism.

ANSWER: Define $\varphi: U \to G$ by $\varphi(a+bi) = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$. (The other way to think of this function is that the number $\cos \theta + i \sin \theta$ is being sent to the matrix that represents rotation by θ .)

 φ is a homomorphism: Take a + bi and c + di from U. We see that

$$\varphi((a+bi)(c+di)) = \varphi(ac-bd+i(ad+bc)) = \begin{bmatrix} ac-bd & -(ad+bc)\\ ad+bc & ac-bd \end{bmatrix}$$

On the other hand,

$$\varphi(a+bi)\varphi(c+di) = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \begin{bmatrix} c & -d \\ d & c \end{bmatrix} = \begin{bmatrix} ac-bd & -ad-bc \\ bc+ad & -bd+ac \end{bmatrix}$$

 φ is one-to-one: We show that $\ker \varphi = \{1\}$. If $\varphi(a+bi) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then a = 1 and b = 0; so, a + ib = 1.

We conclude that φ is an isomorphism from U to $\operatorname{im} \varphi$.

The image of φ is called the rotation group or $SO_2(R)$. It consists of all orthogonal matrices of determinant one.