PRINT Your Name:

Quiz for September 22, 2004

Let G be a finite group with an even number of elements. Prove that there must exist an element $a \in G$ with $a \neq \mathrm{id}$, but $a^{2}=\mathrm{id}$.

ANSWER: Observe that G is the disjoint union of the sets

$$
Y=\left\{g \in G \mid g^{2}=\mathrm{id}\right\} \quad \text { and } \quad N=\left\{g \in G \mid g^{2} \neq \mathrm{id}\right\} .
$$

The set Y always contains at least one element, namely id. Observe that if $g \in N$, then g^{-1} is also in N and $g \neq g^{-1}$. It follows that N may be partitioned into a collection of subsets each of which consists of a pair of elements which are inverses of one another. Thus, N contains an even number of elements. The hypothesis ensures that the group G contains an even number of elements. We conclude that Y contains an even number of elements. Since Y contains at least one element, we now know that Y must contain at least two elements. In other words, there does exist an element g in G with $g \neq \mathrm{id}$, but $g^{2}=\mathrm{id}$.

