PRINT Your Name:

## Quiz for September 15, 2004

Let $g$ be an element of the group $G$ and let

$$
S=\left\{n \in \mathbb{Z} \mid g^{n}=\mathrm{id}\right\} .
$$

(In other words, $S$ is the set of integers $n$ such that $g^{n}$ is equal to the identity of $G$.) Prove that $S$ is a subgroup of $(\mathbb{Z},+)$.
ANSWER:
Closure: Take $n, m$ from $S$. We must show that $n+m$ is in $S$. Well, $g^{n+m}=g^{n} g^{m}=(\mathrm{id})(\mathrm{id})=\mathrm{id}$. We conclude that $n+m \in S$.

Identity: The integer 0 is in $S$ because $g^{0}$ is defined to be the identity element of $G$.

Inverses: Take $n \in S$. So, $g^{n}=$ id. Multiply both sides by $\left(g^{-1}\right)^{n}=g^{-n}$ to see that $\mathrm{id}=g^{-n}$. We conclude that $-n \in S$.

