$\qquad$

## Quiz for April 8, 2004

Let $G=\{x \in \mathbb{R} \mid x>0$ and $x \neq 1\}$. Define $*$ on $G$ by $a * b=a^{\ln b}$. Prove that $G$ is isomorphic to $(\mathbb{R} \backslash\{0\}, \times)$.
ANSWER: Define $\phi: \mathbb{R} \backslash\{0\} \rightarrow G$ by $\phi(r)=e^{r}$. Notice that $\phi$ is a function and $\phi(r) \in G$ for all $r \in \mathbb{R}$ with $r \neq 0$. In other words, $e^{r}$ is positive and not equal to 1 . It is clear that $\phi$ is one-to-one. If $r$ and $s$ are in $\mathbb{R} \backslash\{0\}$ and $\phi(r)=\phi(s)$, then $e^{r}=e^{s}$. Apply $\ln$ to both sides to see that $r=s$. It is clear that $\phi$ is onto. If $g \in G$, then let $r=\ln g$. Notice that $r$ is a real number and $r \neq 0$ because $g \neq 1$. Also $\phi(r)=e^{r}=e^{\ln g}=g$. Now we check that $\phi$ is a homomorphism. Take $r$ and $s$ from $\mathbb{R} \backslash\{0\}$. We see that

$$
\phi(r) * \phi(s)=e^{r} * e^{s}=\left(e^{r}\right)^{\ln e^{s}}=\left(e^{r}\right)^{s}=e^{r s}=\phi(r s) .
$$

