\qquad

Quiz for March 4, 2004

Let G be a group with a and b in G. Assume that $o(a)$ and $o(b)$ are finite and relatively prime, and that $a b=b a$. Prove that $o(a b)=o(a) o(b)$.

ANSWER: Let $\ell=o(a), m=o(b)$, and $n=o(a b)$. Since ℓ, m and n all are positive integers, it suffices to prove that $n \mid \ell m$ and $\ell m \mid n$.
$n \mid \ell m$: The elements a and b commute; hence,

$$
(a b)^{\ell m}=a^{\ell m} b^{\ell m}=\left(a^{\ell}\right)^{m}\left(b^{m}\right)^{\ell}=\mathrm{id} .
$$

So, $(a b)^{\ell m}$ is the identity. It follows that n, which is the order of $a b$, must divide ℓm.
$\ell m \mid n$: Observe that

$$
\mathrm{id}=\left((a b)^{n}\right)^{\ell}=\left(a^{\ell}\right)^{n} b^{n \ell}=b^{n \ell} .
$$

The order of b is m; thus, $m \mid n \ell$. The integers m and ℓ are relatively prime; thus, $m \mid n$.
In a similar manner, we see that

$$
\mathrm{id}=\left((a b)^{n}\right)^{m}=a^{m n}\left(b^{m}\right)^{n}=a^{m n}
$$

The order of a is ℓ; thus, $\ell \mid m n$. The integers ℓ and m are relatively prime; so, $\ell \mid n$.
Finally, we notice that $m \mid n$ and $\ell \mid n$, with ℓ and m relatively prime. It follows that $m \ell \mid n$, and the proof is complete.

