PRINT Your Name:

Quiz for March 4, 2004

Let G be a group with a and b in G. Assume that o(a) and o(b) are finite and relatively prime, and that ab = ba. Prove that o(ab) = o(a)o(b).

ANSWER: Let $\ell = o(a)$, m = o(b), and n = o(ab). Since ℓ , m and n all are positive integers, it suffices to prove that $n|\ell m|$ and $\ell m|n$.

 $n|\ell m$: The elements a and b commute; hence,

$$(ab)^{\ell m} = a^{\ell m} b^{\ell m} = (a^{\ell})^m (b^m)^{\ell} = \mathrm{id}.$$

So, $(ab)^{\ell m}$ is the identity. It follows that $\,n$, which is the order of $\,ab$, must divide ℓm .

 $\ell m | n$: Observe that

$$id = ((ab)^n)^\ell = (a^\ell)^n b^{n\ell} = b^{n\ell}.$$

The order of b is $m\,;\,{\rm thus},\ m|n\ell\,.$ The integers m and ℓ are relatively prime; thus, $m|n\,.$

In a similar manner, we see that

$$id = ((ab)^n)^m = a^{mn}(b^m)^n = a^{mn}.$$

The order of a is ℓ ; thus, $\ell | mn$. The integers ℓ and m are relatively prime; so, $\ell | n$.

Finally, we notice that m|n and $\ell|n$, with ℓ and m relatively prime. It follows that $m\ell|n$, and the proof is complete.