PRINT Your Name:

Quiz for February 5, 2004

Let G be a group. Prove that the center of G is a subgroup of G. (You probably have to tell me what the center of G is.)

ANSWER:

The *center* of the group G is the set

 $Z = \{ x \in G \mid xg = gx \text{ for all } g \in G \}.$

(In other words, the center of G is the set which consists of all elements of G which commute with every element of G.)

The set Z **is closed.** Suppose x and y are in Z, we must show that xy is in Z. Let g be an arbitrary element of G. We must show that xy commutes with g. Well, xyg = xgy because $y \in Z$ and xgy = gxy because $x \in Z$. Thus, (xy)g = g(xy), and $xy \in Z$.

The set Z is non-empty because the identity element of G is in Z.

The inverse axiom is satisfied. Let x be an element of Z. We know that x has an inverse, called x^{-1} , in G. We must show that x^{-1} is in Z. We must show that x^{-1} commutes with every element of G. Let g be an arbitrary element of G. We know that xg = gx (because $x \in Z$). Multiply both sides of this equation on the left by x^{-1} to get $g = x^{-1}gx$. Multiply both sides of this equation on the right by x^{-1} to get $gx^{-1} = x^{-1}g$. We conclude that $x^{-1} \in Z$.

We proved the following result in class.

Proposition. Let H be a non-empty subset of the group (G, *). Suppose H is closed under *. Suppose, also, that whenever $h \in H$, then the inverse of h in G is also an element of H. Then H is a subgroup of G.

Apply the Proposition to conclude that Z is a subgroup of G.