$\qquad$

## Quiz for February 5, 2004

Let $G$ be a group. Prove that the center of $G$ is a subgroup of $G$. (You probably have to tell me what the center of $G$ is.)

## ANSWER:

The center of the group $G$ is the set

$$
Z=\{x \in G \mid x g=g x \text { for all } g \in G\} .
$$

(In other words, the center of $G$ is the set which consists of all elements of $G$ which commute with every element of $G$.)

The set $Z$ is closed. Suppose $x$ and $y$ are in $Z$, we must show that $x y$ is in $Z$. Let $g$ be an arbitrary element of $G$. We must show that $x y$ commutes with $g$. Well, $x y g=x g y$ because $y \in Z$ and $x g y=g x y$ because $x \in Z$. Thus, $(x y) g=g(x y)$, and $x y \in Z$.
The set $Z$ is non-empty because the identity element of $G$ is in $Z$.
The inverse axiom is satisfied. Let $x$ be an element of $Z$. We know that $x$ has an inverse, called $x^{-1}$, in $G$. We must show that $x^{-1}$ is in $Z$. We must show that $x^{-1}$ commutes with every element of $G$. Let $g$ be an arbitrary element of $G$. We know that $x g=g x$ (because $x \in Z$ ). Multiply both sides of this equation on the left by $x^{-1}$ to get $g=x^{-1} g x$. Multiply both sides of this equation on the right by $x^{-1}$ to get $g x^{-1}=x^{-1} g$. We conclude that $x^{-1} \in Z$.
We proved the following result in class.
Proposition. Let $H$ be a non-empty subset of the group $(G, *)$. Suppose $H$ is closed under *. Suppose, also, that whenever $h \in H$, then the inverse of $h$ in $G$ is also an element of $H$. Then $H$ is a subgroup of $G$.

Apply the Proposition to conclude that $Z$ is a subgroup of $G$.

