PRINT Your Name: \qquad

Quiz for February 24, 2004

Let G be a a cyclic group and let a and b be elements of G such that the equations $a=x^{2}$ and $b=x^{2}$ have no solution in G. Prove that $a b=x^{2}$ does have a solution in G.

ANSWER

Let g be a generator of G. The hypothesis $a=x^{2}$ has no solution in G tells us that a must equal g^{n} for some odd integer n. In a similar manner, we see that $b=g^{m}$ for some odd integer m. We see that $a b=g^{n+m}$; furthermore, we know that $n+m$ is even. So, $n+m=2 p$ for some integer p; hence, $\left(g^{p}\right)^{2}=a b$.

