PRINT Your Name:

Quiz for November 8, 2004

Let $\varphi \colon G \to G'$ be a group homomorphism. Consider $\bar{\varphi} \colon \frac{G}{\ker \varphi} \to \operatorname{im} \varphi$, which is given by $\bar{\varphi}(g \ker \varphi) = \varphi(g)$.

- (a) Prove that $\bar{\varphi}$ is a **FUNCTION**. That is, if $g_1 \ker \varphi$ and $g_2 \ker \varphi$ are equal cosets, then prove that $\bar{\varphi}(g_1 \ker \varphi) = \bar{\varphi}(g_2 \ker \varphi)$.
- (b) Prove that the function $\bar{\varphi}$ is one-to-one.

ANSWER: (a) If the cosets $g_1 \ker \varphi$ and $g_2 \ker \varphi$ are equal, then $g_1 = g_2 k$ for some element k of $\ker \varphi$. We see that

$$\bar{\varphi}(g_1 \ker \varphi) = \varphi(g_1) = \varphi(g_2 k) = \varphi(g_2)\varphi(k) = \varphi(g_2) \operatorname{id} = \varphi(g_2) = \bar{\varphi}(g_2 \ker \varphi).$$

(b) Take cosets $g_1 \ker \varphi$ and $g_2 \ker \varphi$ in $\frac{G}{\ker \varphi}$ with $\bar{\varphi}(g_1 \ker \varphi) = \bar{\varphi}(g_2 \ker \varphi)$. It follows that $\varphi(g_1) = \varphi(g_2)$. Multiply both sides by $[\varphi(g_2)]^{-1}$ to see that $\varphi(g_1)[\varphi(g_2)]^{-1} = \mathrm{id}$. Observe further that

$$\varphi(g_1g_2^{-1}) = \varphi(g_1)\varphi(g_2^{-1}) = \varphi(g_1)[\varphi(g_2)]^{-1} = \mathrm{id}.$$

Thus, $g_1g_2^{-1} \in \ker \phi$ and the cosets $g_1 \ker \varphi$ and $g_2 \ker \varphi$ are equal.