Quiz for November 15, 2004

Suppose m and n are relatively prime non-zero integers. Prove that the groups $\frac{\mathbb{Z}}{m n \mathbb{Z}}$ and $\frac{\mathbb{Z}}{m \mathbb{Z}} \times \frac{\mathbb{Z}}{n \mathbb{Z}}$ are isomorphic.
ANSWER: A long time ago we proved
Theorem. Let a and b be elements of finite order in the group $(G, *)$. Suppose $a * b=b * a$ and that the order of a is relatively prime to the order of b. Then the order of $a * b$ is equal to the order of a times the order of b.

Apply the above theorem to the elements $a=(1,0)$ and $b=(0,1)$ of the group $\frac{\mathbb{Z}}{m \mathbb{Z}} \times \frac{\mathbb{Z}}{n \mathbb{Z}}$ in order to conclude that $(1,1)$ has order $n m$; and therefore, $\frac{\mathbb{Z}}{m \mathbb{Z}} \times \frac{\mathbb{Z}}{n \mathbb{Z}}$ is a cyclic group of order $n m$. The group $\frac{\mathbb{Z}}{m n \mathbb{Z}}$ is also a cyclic group of order $m n$. We have proven that any pair of cyclic groups of the same order are isomorphic to one another.

