Quiz for October 13, 2004

Prove that $\frac{\mathbb{Z} \times \mathbb{Z}}{\langle(1,1)\rangle}$ is an infinite cyclic group.
ANSWER: Let H be the subgroup $<(1,1)>$ of the group $G=\mathbb{Z} \times \mathbb{Z}$. We see that the cosets of H in G are

$$
\begin{gathered}
\vdots \\
(-2,0)+H=\{\ldots(-3,-1),(-2,0),(-1,1),(0,2), \ldots\} \\
(-1,0)+H=\{\ldots(-2,-1),(-1,0),(0,1),(1,2), \ldots\} \\
(0,0)+H=\{\ldots(-1,-1),(0,0),(1,1),(2,2), \ldots\} \\
(1,0)+H=\{\ldots(0,-1),(1,0),(2,1),(3,2), \ldots\} \\
(2,0)+H=\{\ldots(1,-1),(2,0),(3,1),(4,2), \ldots\}
\end{gathered}
$$

Be sure to notice that each element of G is in exactly one of the left cosets in my list. The group $\frac{G}{H}$ consists of the above set of cosets under the operation $[(a, b)+H]+[(c, d)+H]=(a+c, b+d)+H$. We see that $\frac{G}{H}$ is a cyclic group with generator $g=(1,0)+H$ because every element of $\frac{G}{H}$ is equal to $n g$ for some integer n. P. S. The other generator for $\frac{G}{H}$ is the inverse of g, namely, $-g=(-1,0)+H$.

