PRINT Your Name:

Quiz for October 1, 2004

Suppose that H is a subgroup of the group G with the property that ghg^{-1} is in H for all $g \in G$ and h in H. Let a, b, and c be elements of G with aH = bH, prove that acH = bcH.

ANSWER: The hypothesis that aH = bH tells us that there is an element h_1 in H with $a = bh_1$.

 $acH\subseteq bcH\colon$ Take a typical element of $\,acH\,,\,{\rm say}\,\,ach\,,\,{\rm where}\,\,h\in H\,.$ Observe that

$$ach = bh_1ch = bcc^{-1}h_1ch = bc(c^{-1}h_1c)h \in bcH.$$

The element inside the parenthenses is in H because of the hypothesis; therefore, $(c^{-1}h_1c)h$ is in H by closure.

 $bcH\subseteq acH$: Take a typical element of $\,bcH\,,\,{\rm say}\,\,bch\,,\,{\rm where}\,\,h\in H\,.$ Observe that

$$bch = ah_1^{-1}ch = acc^{-1}h_1^{-1}ch = ac(c^{-1}h_1^{-1}c)h \in acH.$$