PRINT Your Name:

Quiz for October 1, 2004

Suppose that H is a subgroup of the group G with the property that $g h g^{-1}$ is in H for all $g \in G$ and h in H. Let a, b, and c be elements of G with $a H=b H$, prove that $a c H=b c H$.

ANSWER: The hypothesis that $a H=b H$ tells us that there is an element h_{1} in H with $a=b h_{1}$.
$a c H \subseteq b c H$: Take a typical element of $a c H$, say $a c h$, where $h \in H$. Observe that

$$
a c h=b h_{1} c h=b c c^{-1} h_{1} c h=b c\left(c^{-1} h_{1} c\right) h \in b c H .
$$

The element inside the parenthenses is in H because of the hypothesis; therefore, $\left(c^{-1} h_{1} c\right) h$ is in H by closure.
$b c H \subseteq a c H$: Take a typical element of $b c H$, say $b c h$, where $h \in H$. Observe that

$$
b c h=a h_{1}^{-1} c h=a c c^{-1} h_{1}^{-1} c h=a c\left(c^{-1} h_{1}^{-1} c\right) h \in a c H .
$$

