PRINT Your Name:

Quiz for November 17, 2011

Let $\varphi: G \to G'$ be a group homomorphism. Consider $\bar{\varphi}: \frac{G}{\ker \varphi} \to \operatorname{im} \varphi$, which is given by $\bar{\varphi}(g \ker \varphi) = \varphi(g)$. Prove that $\bar{\varphi}$ is a FUNCTION. That is, if $g_1 \ker \varphi$ and $g_2 \ker \varphi$ are equal cosets, then prove that $\bar{\varphi}(g_1 \ker \varphi) = \bar{\varphi}(g_2 \ker \varphi)$.

Answer: We are given that $g_1 = g_2 k$ for some element $k \in \ker \varphi$. We see that

$$\bar{\varphi}(g_1 \ker \varphi) = \varphi(g_1) = \varphi(g_2 k) = \varphi(g_2)\varphi(k) = \varphi(g_2) = \bar{\varphi}(g_2 \ker \varphi).$$