PRINT Your Name: \qquad
Quiz for November 10, 2011
Let $G=D_{4}$ and $\left.H=<\rho^{2}\right\rangle$. We know that H is a normal subgroup of G; so, the factor group $\frac{G}{H}$ exists and makes sense. How many elements are in $\frac{G}{H}$? What is the multiplication table for $\frac{G}{H}$? (If you can describe the multiplication in $\frac{G}{H}$ by using words and not actually writing down the multiplication table that would make a fine answer.) Be sure to justify your answers.

Answer: The group G has 8 elements and the subgroup H has two elements. When we proved Lagrange's Theorem, we saw that the number of elements in G is equal to the number of elements in H times the number of left cosets of H in G. So there are $8 / 2=4$ left cosets of H in G. The elements of $\frac{G}{H}$ are the left cosets of H in G. Thus $\frac{G}{H}$ has 4 elements. It is easy to see that the elements of $\frac{G}{H}$ are $\mathrm{id} H, \sigma H, \sigma \rho H, \rho H$; further, each element squares to $\mathrm{id} H$ and the product of two of the non-identity elements is the third non-identity element. Thus, $\frac{G}{H}$ is a Klein 4-group.

