PRINT Your Name: \qquad

Quiz for October 13, 2011

Let ℓ, m, and n be fixed positive integers and let H be the subgroup

$$
H=\{a m+b n \mid a, b \in \mathbb{Z}\}
$$

of \mathbb{Z}. (I believe that H is a subgroup. I do not need to see a proof.) Suppose that H is also equal to $\{c \ell \mid c \in \mathbb{Z}\}$. Prove that ℓ is the greatest common divisor of n and m.

Answer: We see that $m \in H=\{c \ell \mid c \in \mathbb{Z}\}$ so $\ell \mid m$ and $n \in H=\{c \ell \mid c \in \mathbb{Z}\}$ so $\ell \mid n$. Thus, ℓ is a common divisor of m and n. We now show that ℓ is the greatest common divisor of m and n. Suppose z is a common divisor of m and n. We must show that $z \leq \ell$. If z happens to be negative, then z is certainly less than the positive ℓ; so we need only think about the problem when z is positive. We know that $\ell \in H=\{a m+b n \mid a, b \in \mathbb{Z}\}$; so $\ell=a m+b n$ for some a and b; but z divides m and z divides n; so z also divides $a m+b n=\ell$. Thus, $\ell=\# z$ for some positive integer $\#$ and $z \leq \ell$.

