PRINT Your Name: \qquad

Quiz for September 22, 2011

Let σ and ρ be the following two elements of $\operatorname{Sym}(\{1,2,3,4\})$. The function ρ has the behavior: $\rho(1)=2, \rho(2)=3, \rho(3)=4, \rho(4)=1$. The function σ has the following behavior: $\sigma(1)=1, \sigma(2)=4, \sigma(3)=3$, and $\sigma(4)=2$. Let H be the smallest subgroup of $\operatorname{Sym}(\{1,2,3,4\})$ which contains σ and ρ.
List 6 subgroups of H in addition to H and \{id\}. Justify your answer.
Recall that you already know that $\rho^{4}=\sigma^{2}=\mathrm{id}$ and $\sigma \rho=\rho^{3} \sigma$. You also know that H has 8 distinct elements and each of these elements can be written in the form $\rho^{i} \sigma^{j}$ with $i \in\{0,1,2,3\}$ and $j \in\{0,1\}$.

Answer: The non-trivial cyclic subgroups of H are $\left.\langle\rho\rangle=\left\{\mathrm{id}, \rho, \rho^{2}, \rho^{3}\right\},<\rho^{2}\right\rangle=$ $\left\{\rho^{2}, \mathrm{id}\right\},<\sigma>=\{\sigma, \mathrm{id}\},<\rho \sigma>=\{\rho \sigma, \mathrm{id}\},<\rho^{2} \sigma>=\left\{\rho^{2} \sigma, \mathrm{id}\right\},<\rho^{3} \sigma>=\left\{\rho^{3} \sigma, \mathrm{id}\right\}$. In last week's quiz, we found that the centralizer of σ in H is $\left\{\mathrm{id}, \sigma, \rho^{2} \sigma, \rho^{2}\right\}$. The exact same reasoning as we used last week shows that the centralizer of $\rho \sigma$ in H is $\left\{\mathrm{id}, \rho \sigma, \rho^{3} \sigma, \rho^{2}\right\}$. We have listed 8 subgroups of H.

