PRINT Your Name:

Quiz for September 22, 2011

Let σ and ρ be the following two elements of Sym($\{1, 2, 3, 4\}$). The function ρ has the behavior: $\rho(1) = 2$, $\rho(2) = 3$, $\rho(3) = 4$, $\rho(4) = 1$. The function σ has the following behavior: $\sigma(1) = 1$, $\sigma(2) = 4$, $\sigma(3) = 3$, and $\sigma(4) = 2$. Let H be the smallest subgroup of Sym($\{1, 2, 3, 4\}$) which contains σ and ρ .

List 6 subgroups of H in addition to H and $\{id\}$. Justify your answer.

Recall that you already know that $\rho^4 = \sigma^2 = \text{id}$ and $\sigma \rho = \rho^3 \sigma$. You also know that H has 8 distinct elements and each of these elements can be written in the form $\rho^i \sigma^j$ with $i \in \{0, 1, 2, 3\}$ and $j \in \{0, 1\}$.

Answer: The non-trivial cyclic subgroups of H are $\langle \rho \rangle = \{id, \rho, \rho^2, \rho^3\}, \langle \rho^2 \rangle = \{\rho^2, id\}, \langle \sigma \rangle = \{\sigma, id\}, \langle \rho\sigma \rangle = \{\rho\sigma, id\}, \langle \rho^2\sigma \rangle = \{\rho^2\sigma, id\}, \langle \rho^3\sigma \rangle = \{\rho^3\sigma, id\}.$ In last week's quiz, we found that the centralizer of σ in H is $\{id, \sigma, \rho^2\sigma, \rho^2\}$. The exact same reasoning as we used last week shows that the centralizer of $\rho\sigma$ in H is $\{id, \rho\sigma, \rho^3\sigma, \rho^2\}$. We have listed 8 subgroups of H.