PRINT Your Name: \qquad

Quiz for September 15, 2011

Let σ and ρ be the following two elements of $\operatorname{Sym}(\{1,2,3,4\})$. The function ρ has the behavior: $\rho(1)=2, \rho(2)=3, \rho(3)=4, \rho(4)=1$. The function σ has the following behavior: $\sigma(1)=1, \sigma(2)=4, \sigma(3)=3$, and $\sigma(4)=2$. Let H be the smallest subgroup of $\operatorname{Sym}(\{1,2,3,4\})$ which contains σ and ρ.
List the elements in the centralizer of σ in H. Justify your answer.
Recall that if a is an element of the group H, then the centralizer of a in H is $\{h \in H \mid h a=a h\}$. Presumably, you already know that $\rho^{4}=\sigma^{2}=\mathrm{id}$ and $\sigma \rho=\rho^{3} \sigma$. You also know that H has 8 distinct elements and each of these elements can be written in the form $\rho^{i} \sigma^{j}$ with $i \in\{0,1,2,3\}$ and $j \in\{0,1\}$.

Answer: The centralizer of σ is $\left\{\mathrm{id}, \sigma, \rho^{2}, \rho^{2} \sigma\right\}$. It is clear that σ and id commute with σ. One computes

$$
\sigma \rho^{2}=(\sigma \rho) \rho=\left(\rho^{3} \sigma\right) \rho=\rho^{3}(\sigma \rho)=\rho^{3}\left(\rho^{3} \sigma\right)=\rho^{2} \sigma
$$

We have seen that the centralizer of σ is a group. If σ and ρ^{2} are in ther centralizer, then $\rho^{2} \sigma$ is also in the centralizer. We know that $\sigma \rho=\rho^{3} \sigma$, and this is different than $\rho \sigma$; so ρ is not in the centalizer. Again, we use the fact that the centralizer is a group to see that $\rho^{3}, \rho \sigma$, and $\rho^{3} \sigma$ are not in the centralizer: if ρ^{3}, then closure would give $\rho^{3} \rho^{2}=\rho$ is in the centralizer; if $\rho \sigma$ were in the centralizer, then closure would give $(\rho \sigma) \sigma=\rho$ is in the centralizer; if $\rho^{3} \sigma$ were in the centralizer, then closure would give $\left(\rho^{3} \sigma\right) \sigma=\rho^{3}$ is in the centralizer.

