PRINT Your Name:

Quiz for September 15, 2011

Let σ and ρ be the following two elements of Sym($\{1, 2, 3, 4\}$). The function ρ has the behavior: $\rho(1) = 2$, $\rho(2) = 3$, $\rho(3) = 4$, $\rho(4) = 1$. The function σ has the following behavior: $\sigma(1) = 1$, $\sigma(2) = 4$, $\sigma(3) = 3$, and $\sigma(4) = 2$. Let H be the smallest subgroup of Sym($\{1, 2, 3, 4\}$) which contains σ and ρ .

List the elements in the centralizer of σ in H. Justify your answer.

Recall that if a is an element of the group H, then the centralizer of a in H is $\{h \in H \mid ha = ah\}$. Presumably, you already know that $\rho^4 = \sigma^2 = \text{id}$ and $\sigma\rho = \rho^3\sigma$. You also know that H has 8 distinct elements and each of these elements can be written in the form $\rho^i \sigma^j$ with $i \in \{0, 1, 2, 3\}$ and $j \in \{0, 1\}$.

Answer: The centralizer of σ is {id, σ , ρ^2 , $\rho^2 \sigma$ }. It is clear that σ and id commute with σ . One computes

$$\sigma\rho^2 = (\sigma\rho)\rho = (\rho^3\sigma)\rho = \rho^3(\sigma\rho) = \rho^3(\rho^3\sigma) = \rho^2\sigma.$$

We have seen that the centralizer of σ is a group. If σ and ρ^2 are in ther centralizer, then $\rho^2 \sigma$ is also in the centralizer. We know that $\sigma \rho = \rho^3 \sigma$, and this is different than $\rho \sigma$; so ρ is not in the centralizer. Again, we use the fact that the centralizer is a group to see that ρ^3 , $\rho \sigma$, and $\rho^3 \sigma$ are not in the centralizer: if ρ^3 , then closure would give $\rho^3 \rho^2 = \rho$ is in the centralizer; if $\rho \sigma$ were in the centralizer, then closure would give $(\rho \sigma)\sigma = \rho$ is in the centralizer; if $\rho^3 \sigma$ were in the centralizer, then closure would give $(\rho^3 \sigma)\sigma = \rho^3$ is in the centralizer.