PRINT Your Name: \qquad

Quiz for September 1, 2011

Let G be the group U_{9}, which consists of all complex numbers z such that $z^{9}=1$.
(a) Which elements g of G can be written in the form h^{2} for some $h \in G$?
(b) Which elements g of G can be written in the form h^{3} for some $h \in G$?

ANSWER: Let $z_{0}=e^{2 \pi i / 9}$. (If you prefer, $z_{0}=\cos (2 \pi / 9)+i \sin (2 \pi / 9)$. At any rate the elements of G are $\left\{z_{0}^{j} \mid 0 \leq j \leq 8\right\}$.
(a) Every element of G has the form h^{2} for some $h \in G$. Indeed, $1=1^{2}, z_{0}=\left(z_{0}^{5}\right)^{2}$, $z_{0}^{2}=\left(z_{0}\right)^{2}, z_{0}^{3}=\left(z_{0}^{6}\right)^{2}, z_{0}^{4}=\left(z_{0}^{2}\right)^{2}, z_{0}^{5}=\left(z_{0}^{7}\right)^{2}, z_{0}^{6}=\left(z_{0}^{3}\right)^{2}, z_{0}^{7}=\left(z_{0}^{8}\right)^{2}$, and $z_{0}^{8}=\left(z_{0}^{4}\right)^{2}$.
(b) Only $1, z_{0}^{3}$ and z_{0}^{6} have the form h^{3} for some $h \in G$. Indeed, $1^{3}=1, z_{0}^{3}=z_{0}^{3}$, $\left(z_{0}^{2}\right)^{3}=z_{0}^{6},\left(z_{0}^{3}\right)^{3}=1,\left(z_{0}^{4}\right)^{3}=z_{0}^{3},\left(z_{0}^{5}\right)^{3}=z_{0}^{6},\left(z_{0}^{6}\right)^{3}=1,\left(z_{0}^{7}\right)^{3}=z_{0}^{3}$, and $\left(z_{0}^{8}\right)^{3}=z_{0}^{6}$.

