PRINT Your Name: \qquad
Quiz for August 25, 2011
Let $S=\mathbb{R} \backslash\{-1\}$. Define $*$ on S by $a * b=a+b+a b$. Prove that $(S, *)$ is a group.

ANSWER:

Closure: Take a, b from S. We must show that $a * b$ is in S. Well, $a * b=a+b+a b$, which is clearly a real number. We must check that $a+b+a b$ is not equal to -1 . If $a+b+a b$ were equal to -1 , then $a+b+a b=-1$; so, $1+a+b+a b=0$; that is, $(1+a)(1+b)=0$; so $a=-1$ or $b=-1$. On the other hand, a and b are in S; so neither a nor b is -1 . We conclude that $a+b+a b \neq-1$; therefore, $a+b+a b \in S$ Associativity: Take a, b, and c from S. Observe that
$a *(b * c)=a *(b+c+b c)=a+(b+c+b c)+a(b+c+b c)=a+b+c+a b+a c+b c+a b c$.
On the other hand,
$(a * b) * c=(a+b+a b) * c=(a+b+a b)+c+(a+b+a b) c=a+b+c+a b+a c+b c+a b c$.
We see that $a *(b * c)=(a * b) * c$.
Identity: The number 0 is the identity element of S because $a * 0=a+0+a(0)=a$ and $0 * a=0+a+0(a)=a$ for all $a \in S$.
Inverses: Take $a \in S$. The inverse of a is $\frac{-a}{1+a}$ because

$$
a * \frac{-a}{1+a}=a+\frac{-a}{1+a}+a \frac{-a}{1+a}=a+\frac{-a(1+a)}{1+a}=a-a=0 .
$$

The operation * is commutative; so, $\frac{-a}{1+a} * a$ is also equal to 0 . Notice, also, that $\frac{-a}{1+a} \in S$ because $\frac{-a}{1+a}$ is a real number (since $a \neq-1$) and $\frac{-a}{1+a}$ is not equal to -1 ; because if $\frac{-a}{1+a}$ were equal to -1 , then $\frac{-a}{1+a}=-1$, so $-a=-1-a$; that is, $0=-1$.

