PRINT Your Name:

Quiz for August 25, 2011

Let $S = \mathbb{R} \setminus \{-1\}$. Define * on S by a * b = a + b + ab. Prove that (S, *) is a group.

ANSWER:

Closure: Take a, b from S. We must show that a * b is in S. Well, a * b = a + b + ab, which is clearly a real number. We must check that a + b + ab is not equal to -1. If a + b + ab were equal to -1, then a + b + ab = -1; so, 1 + a + b + ab = 0; that is, (1 + a)(1 + b) = 0; so a = -1 or b = -1. On the other hand, a and b are in S; so neither a nor b is -1. We conclude that $a + b + ab \neq -1$; therefore, $a + b + ab \in S$

Associativity: Take a, b, and c from S. Observe that

a * (b * c) = a * (b + c + bc) = a + (b + c + bc) + a(b + c + bc) = a + b + c + ab + ac + bc + abc.

On the other hand,

$$(a * b) * c = (a + b + ab) * c = (a + b + ab) + c + (a + b + ab)c = a + b + c + ab + ac + bc + abc.$$

We see that a * (b * c) = (a * b) * c.

Identity: The number 0 is the identity element of S because a * 0 = a + 0 + a(0) = aand 0 * a = 0 + a + 0(a) = a for all $a \in S$.

Inverses: Take $a \in S$. The inverse of a is $\frac{-a}{1+a}$ because

$$a * \frac{-a}{1+a} = a + \frac{-a}{1+a} + a\frac{-a}{1+a} = a + \frac{-a(1+a)}{1+a} = a - a = 0.$$

The operation * is commutative; so, $\frac{-a}{1+a} * a$ is also equal to 0. Notice, also, that $\frac{-a}{1+a} \in S$ because $\frac{-a}{1+a}$ is a real number (since $a \neq -1$) and $\frac{-a}{1+a}$ is not equal to -1; because if $\frac{-a}{1+a}$ were equal to -1, then $\frac{-a}{1+a} = -1$, so -a = -1 - a; that is, 0 = -1.