6. Recall that D_{3} is the smallest subgroup of the group of rigid motions which contains ρ and σ, where ρ is rotation counter clockwise by 120° fixing the origin and σ is reflection of the $x y$ plane across the x axis. List 4 subgroups of D_{3} in addition to D_{3} and $\{\mathrm{id}\}$. (I do not need to see any details.)

7. The Dihedral group D_{4} consists of 8 elements id, $\rho, \rho^{2}, \rho^{3}, \sigma, \sigma \rho, \sigma \rho^{2}$, and $\sigma \rho^{3}$. In class we calculated that $\rho \sigma=\sigma \rho^{3}, \rho^{4}=\mathrm{id}$, and $\sigma^{2}=\mathrm{id}$. Express $\rho^{2} \sigma \rho \sigma$ in the form $\sigma^{i} \rho^{j}$ for some integers i and j, with $0 \leq i \leq 1$, and $0 \leq j \leq 3$.

$$
\rho^{2} \sigma \rho \sigma=\rho(\rho \sigma) \rho \sigma=\rho\left(\sigma \rho^{3}\right) \rho \sigma=\rho \sigma \rho^{4} \sigma=\rho \sigma \sigma=\rho
$$

