- 9. (6 points) This problem has TWO parts.
 - (a) LIST the right cosets of $\langle \sigma \rangle$ in D_4 .

$$\langle \tau 7 i \sigma = \{ i \sigma_{1}, \tau \} \}$$

 $\langle \sigma 7 \rangle^{2} = \{ \rho_{1}, \tau \rho_{2} \}$
 $\langle \sigma 7 \rangle^{3} = \{ \rho_{2}, \sigma \rho_{2} \}$
 $\langle \sigma 7 \rangle^{3} = \{ \rho_{3}, \tau \rho_{3} \}$

(b) Let S equal the set of right cosets of $\langle \sigma \rangle$ in D_4 . Is

$$(<\sigma>x,<\sigma>y)\mapsto <\sigma>xy$$

a well-defined FUNCTION from $S \times S$ to S? EXPLAIN.

No
$$\langle \tau \gamma \rho = \langle \tau \gamma \tau \rho \rangle$$

 $\langle \tau \gamma \rho = \langle \tau \gamma \tau \rho \rangle$
but $\langle \tau \gamma \rho = \langle \tau \gamma \rho \rangle^2 = \langle \tau \gamma \rho^2 \rangle$
and $\langle \tau \gamma \tau \rho \rangle = \langle \tau \gamma \tau \rho \rangle = \langle \tau \gamma \tau \rho \rangle$
and $\langle \tau \gamma \tau \rho \rangle = \langle \tau \gamma \tau \rho \rangle = \langle \tau \gamma \tau \rho \rangle$